Hydrogen-Induced Dislocation Nucleation and Plastic Deformation of <inline-formula><math display="inline"><semantics><mrow><mstyle mathvariant="bold"><mo>〈</mo><mrow><mn>001</mn></mrow><mo>〉</mo></mstyle></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><mstyle mathvariant="bold"><mo>〈</mo><mrow><mn>1</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>〉</mo></mstyle></mrow></semantics></math></inline-formula> Grain Boundaries in Nickel

The grain boundary (GB) plays a crucial role in dominating hydrogen-induced plastic deformation and intergranular failure in polycrystal metals. In the present study, molecular dynamics simulations were employed to study the effects of hydrogen segregation on dislocation plasticity of a series of sy...

Full description

Bibliographic Details
Main Authors: Jiaqing Li, Ziyue Wu, Lin Teng, Guanyu Deng, Rui Wang, Cheng Lu, Weidong Li, Xin Huang, Yu Liu
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/18/6503
Description
Summary:The grain boundary (GB) plays a crucial role in dominating hydrogen-induced plastic deformation and intergranular failure in polycrystal metals. In the present study, molecular dynamics simulations were employed to study the effects of hydrogen segregation on dislocation plasticity of a series of symmetrical tilt grain boundaries (STGBs) with various hydrogen concentrations. Our study shows that hydrogen both enhances and reduces dislocation nucleation events from STGBs, depending on different GB structures. Specifically, for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>⟨</mo><mrow><mn>001</mn></mrow><mo>⟩</mo></mrow></mrow></semantics></math></inline-formula> STGBs, hydrogen does not affect the mode of heterogeneous dislocation nucleation (HDN), but facilitates nucleation events as a consequence of hydrogen disordering the GB structure. Conversely, hydrogen retards dislocation nucleation due to the fact that hydrogen segregation disrupts the transformation of boundary structure such as Σ9 (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo> </mo><mn>2</mn><mo> </mo><mover accent="true"><mn>1</mn><mo>¯</mo></mover></mrow></semantics></math></inline-formula>) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>⟨</mo><mrow><mn>1</mn><mover accent="true"><mn>1</mn><mo>¯</mo></mover><mn>0</mn></mrow><mo>⟩</mo></mrow></mrow></semantics></math></inline-formula> STGB. These results are helpful for deepening our understanding of GB-mediated hydrogen embrittlement (HE) mechanisms.
ISSN:1996-1944