Neural Graph Similarity Computation with Contrastive Learning

Computing the similarity between graphs is a longstanding and challenging problem with many real-world applications. Recent years have witnessed a rapid increase in neural-network-based methods, which project graphs into embedding space and devise end-to-end frameworks to learn to estimate graph sim...

Full description

Bibliographic Details
Main Authors: Shengze Hu, Weixin Zeng, Pengfei Zhang, Jiuyang Tang
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/15/7668
Description
Summary:Computing the similarity between graphs is a longstanding and challenging problem with many real-world applications. Recent years have witnessed a rapid increase in neural-network-based methods, which project graphs into embedding space and devise end-to-end frameworks to learn to estimate graph similarity. Nevertheless, these solutions usually design complicated networks to capture the fine-grained interactions between graphs, and hence have low efficiency. Additionally, they rely on labeled data for training the neural networks and overlook the useful information hidden in the graphs themselves. To address the aforementioned issues, in this work, we put forward a contrastive neural graph similarity learning framework, Conga. Specifically, we utilize vanilla graph convolutional networks to generate the graph representations and capture the cross-graph interactions via a simple multilayer perceptron. We further devise an unsupervised contrastive loss to discriminate the graph embeddings and guide the training process by learning more expressive entity representations. Extensive experiment results on public datasets validate that our proposal has more robust performance and higher efficiency compared with state-of-the-art methods.
ISSN:2076-3417