Application of the network scale‐up method to estimate the sizes of key populations for HIV in Singapore using online surveys
Abstract Introduction Singapore lacks robust data on the sizes of the key populations that are most at risk for HIV. Using the network scale‐up method for hidden or hard‐to‐reach populations, we estimate the sizes of five key populations—male clients of female sex workers (MCFSW), men who have sex w...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2023-03-01
|
Series: | Journal of the International AIDS Society |
Subjects: | |
Online Access: | https://doi.org/10.1002/jia2.25973 |
_version_ | 1827154347616632832 |
---|---|
author | Sharon Esi Duoduwa Quaye Yuwei Cheng Rayner Kay Jin Tan Joel R. Koo Kiesha Prem Alvin Kuo Jing Teo Alex R. Cook |
author_facet | Sharon Esi Duoduwa Quaye Yuwei Cheng Rayner Kay Jin Tan Joel R. Koo Kiesha Prem Alvin Kuo Jing Teo Alex R. Cook |
author_sort | Sharon Esi Duoduwa Quaye |
collection | DOAJ |
description | Abstract Introduction Singapore lacks robust data on the sizes of the key populations that are most at risk for HIV. Using the network scale‐up method for hidden or hard‐to‐reach populations, we estimate the sizes of five key populations—male clients of female sex workers (MCFSW), men who have sex with men (MSM), female sex workers (FSW), people who inject drugs (PWID) and transgender people—and profile the ages and ethnicities of respondents with the high‐risk contacts they report knowing. Methods We conducted a cross‐sectional online survey between March and May 2019 (n = 2802) using a network scale‐up instrument previously developed for Singapore. Participants were recruited using an existing panel and online advertising, and the sample reweighted by age, sex, ethnicity and education attained to represent the general adult population. We built a Bayesian hierarchical model to estimate the sizes of the five key populations for HIV in Singapore. Results After adjustment, the sizes of the at‐risk populations are estimated to be: 76,800 (95% credible interval [CI]: 64,200–91,800) MCFSW; 139,000 (95% CI: 120,000–160,000) MSM; 8030 (95% CI: 3980–16,200) FSW; 3470 (95% CI: 1540–7830) PWID and 18,000 (95% CI: 14,000–23,200) transgender people. Generally, men reported knowing more people in all the high‐risk groups; older people reported knowing more MCFSW, FSW and transgender people; and younger people reported knowing more MSM. There was a bimodal effect of age on those who reported knowing more PWIDs: people in their 20s and 60s reported more contacts. Conclusions This study demonstrates that a size estimation study of hidden populations is quickly and efficiently scalable through using online surveys in a socially conservative society, like Singapore, where key populations are stigmatized or criminalized. The approach may be suitable in other countries where stigma is prevalent and where barriers to surveillance and data collection are numerous. |
first_indexed | 2024-04-09T21:03:06Z |
format | Article |
id | doaj.art-779237f6c7e34443ab7080bbceb524f7 |
institution | Directory Open Access Journal |
issn | 1758-2652 |
language | English |
last_indexed | 2025-03-20T22:36:13Z |
publishDate | 2023-03-01 |
publisher | Wiley |
record_format | Article |
series | Journal of the International AIDS Society |
spelling | doaj.art-779237f6c7e34443ab7080bbceb524f72024-08-07T05:01:14ZengWileyJournal of the International AIDS Society1758-26522023-03-01263n/an/a10.1002/jia2.25973Application of the network scale‐up method to estimate the sizes of key populations for HIV in Singapore using online surveysSharon Esi Duoduwa Quaye0Yuwei Cheng1Rayner Kay Jin Tan2Joel R. Koo3Kiesha Prem4Alvin Kuo Jing Teo5Alex R. Cook6Saw Swee Hock School of Public Health National University of Singapore and National University Health System SingaporeDepartment of Statistics University of Chicago Chicago Illinois USASaw Swee Hock School of Public Health National University of Singapore and National University Health System SingaporeSaw Swee Hock School of Public Health National University of Singapore and National University Health System SingaporeSaw Swee Hock School of Public Health National University of Singapore and National University Health System SingaporeSaw Swee Hock School of Public Health National University of Singapore and National University Health System SingaporeSaw Swee Hock School of Public Health National University of Singapore and National University Health System SingaporeAbstract Introduction Singapore lacks robust data on the sizes of the key populations that are most at risk for HIV. Using the network scale‐up method for hidden or hard‐to‐reach populations, we estimate the sizes of five key populations—male clients of female sex workers (MCFSW), men who have sex with men (MSM), female sex workers (FSW), people who inject drugs (PWID) and transgender people—and profile the ages and ethnicities of respondents with the high‐risk contacts they report knowing. Methods We conducted a cross‐sectional online survey between March and May 2019 (n = 2802) using a network scale‐up instrument previously developed for Singapore. Participants were recruited using an existing panel and online advertising, and the sample reweighted by age, sex, ethnicity and education attained to represent the general adult population. We built a Bayesian hierarchical model to estimate the sizes of the five key populations for HIV in Singapore. Results After adjustment, the sizes of the at‐risk populations are estimated to be: 76,800 (95% credible interval [CI]: 64,200–91,800) MCFSW; 139,000 (95% CI: 120,000–160,000) MSM; 8030 (95% CI: 3980–16,200) FSW; 3470 (95% CI: 1540–7830) PWID and 18,000 (95% CI: 14,000–23,200) transgender people. Generally, men reported knowing more people in all the high‐risk groups; older people reported knowing more MCFSW, FSW and transgender people; and younger people reported knowing more MSM. There was a bimodal effect of age on those who reported knowing more PWIDs: people in their 20s and 60s reported more contacts. Conclusions This study demonstrates that a size estimation study of hidden populations is quickly and efficiently scalable through using online surveys in a socially conservative society, like Singapore, where key populations are stigmatized or criminalized. The approach may be suitable in other countries where stigma is prevalent and where barriers to surveillance and data collection are numerous.https://doi.org/10.1002/jia2.25973modellingkey and vulnerable populationsmen who have sex with mensex workerstransgender peoplestigma |
spellingShingle | Sharon Esi Duoduwa Quaye Yuwei Cheng Rayner Kay Jin Tan Joel R. Koo Kiesha Prem Alvin Kuo Jing Teo Alex R. Cook Application of the network scale‐up method to estimate the sizes of key populations for HIV in Singapore using online surveys Journal of the International AIDS Society modelling key and vulnerable populations men who have sex with men sex workers transgender people stigma |
title | Application of the network scale‐up method to estimate the sizes of key populations for HIV in Singapore using online surveys |
title_full | Application of the network scale‐up method to estimate the sizes of key populations for HIV in Singapore using online surveys |
title_fullStr | Application of the network scale‐up method to estimate the sizes of key populations for HIV in Singapore using online surveys |
title_full_unstemmed | Application of the network scale‐up method to estimate the sizes of key populations for HIV in Singapore using online surveys |
title_short | Application of the network scale‐up method to estimate the sizes of key populations for HIV in Singapore using online surveys |
title_sort | application of the network scale up method to estimate the sizes of key populations for hiv in singapore using online surveys |
topic | modelling key and vulnerable populations men who have sex with men sex workers transgender people stigma |
url | https://doi.org/10.1002/jia2.25973 |
work_keys_str_mv | AT sharonesiduoduwaquaye applicationofthenetworkscaleupmethodtoestimatethesizesofkeypopulationsforhivinsingaporeusingonlinesurveys AT yuweicheng applicationofthenetworkscaleupmethodtoestimatethesizesofkeypopulationsforhivinsingaporeusingonlinesurveys AT raynerkayjintan applicationofthenetworkscaleupmethodtoestimatethesizesofkeypopulationsforhivinsingaporeusingonlinesurveys AT joelrkoo applicationofthenetworkscaleupmethodtoestimatethesizesofkeypopulationsforhivinsingaporeusingonlinesurveys AT kieshaprem applicationofthenetworkscaleupmethodtoestimatethesizesofkeypopulationsforhivinsingaporeusingonlinesurveys AT alvinkuojingteo applicationofthenetworkscaleupmethodtoestimatethesizesofkeypopulationsforhivinsingaporeusingonlinesurveys AT alexrcook applicationofthenetworkscaleupmethodtoestimatethesizesofkeypopulationsforhivinsingaporeusingonlinesurveys |