Generation of highly-polarized high-energy brilliant γ-rays via laser-plasma interaction

The generation of highly polarized high-energy brilliant γ-rays via laser–plasma interaction is investigated in the quantum radiation-reaction regime. We employ a quantum electrodynamics particle-in-cell code to describe spin-resolved electron dynamics semiclassically and photon emission and polariz...

Full description

Bibliographic Details
Main Authors: Kun Xue, Zhen-Ke Dou, Feng Wan, Tong-Pu Yu, Wei-Min Wang, Jie-Ru Ren, Qian Zhao, Yong-Tao Zhao, Zhong-Feng Xu, Jian-Xing Li
Format: Article
Language:English
Published: AIP Publishing LLC 2020-09-01
Series:Matter and Radiation at Extremes
Online Access:http://dx.doi.org/10.1063/5.0007734
Description
Summary:The generation of highly polarized high-energy brilliant γ-rays via laser–plasma interaction is investigated in the quantum radiation-reaction regime. We employ a quantum electrodynamics particle-in-cell code to describe spin-resolved electron dynamics semiclassically and photon emission and polarization quantum mechanically in the local constant field approximation. As an ultrastrong linearly polarized (LP) laser pulse irradiates a near-critical-density (NCD) plasma followed by an ultrathin planar aluminum target, the electrons in the NCD plasma are first accelerated by the driving laser to ultrarelativistic energies and then collide head-on with the laser pulse reflected by the aluminum target, emitting brilliant LP γ-rays via nonlinear Compton scattering with an average polarization of about 70% and energy up to hundreds of MeV. Such γ-rays can be produced with currently achievable laser facilities and will find various applications in high-energy physics and laboratory astrophysics.
ISSN:2468-080X