Scalar-on-Function Relative Error Regression for Weak Dependent Case

Analyzing the co-variability between the Hilbert regressor and the scalar output variable is crucial in functional statistics. In this contribution, the kernel smoothing of the Relative Error Regression (RE-regression) is used to resolve this problem. Precisely, we use the relative square error to e...

Full description

Bibliographic Details
Main Authors: Zouaoui Chikr Elmezouar, Fatimah Alshahrani, Ibrahim M. Almanjahie, Zoulikha Kaid, Ali Laksaci, Mustapha Rachdi
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/7/613
_version_ 1797590303227510784
author Zouaoui Chikr Elmezouar
Fatimah Alshahrani
Ibrahim M. Almanjahie
Zoulikha Kaid
Ali Laksaci
Mustapha Rachdi
author_facet Zouaoui Chikr Elmezouar
Fatimah Alshahrani
Ibrahim M. Almanjahie
Zoulikha Kaid
Ali Laksaci
Mustapha Rachdi
author_sort Zouaoui Chikr Elmezouar
collection DOAJ
description Analyzing the co-variability between the Hilbert regressor and the scalar output variable is crucial in functional statistics. In this contribution, the kernel smoothing of the Relative Error Regression (RE-regression) is used to resolve this problem. Precisely, we use the relative square error to establish an estimator of the Hilbertian regression. As asymptotic results, the Hilbertian observations are assumed to be quasi-associated, and we demonstrate the almost complete consistency of the constructed estimator. The feasibility of this Hilbertian model as a predictor in functional time series data is discussed. Moreover, we give some practical ideas for selecting the smoothing parameter based on the bootstrap procedure. Finally, an empirical investigation is performed to examine the behavior of the RE-regression estimation and its superiority in practice.
first_indexed 2024-03-11T01:18:40Z
format Article
id doaj.art-77c1aef31f9142e19e7572c7bd333675
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T01:18:40Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-77c1aef31f9142e19e7572c7bd3336752023-11-18T18:16:59ZengMDPI AGAxioms2075-16802023-06-0112761310.3390/axioms12070613Scalar-on-Function Relative Error Regression for Weak Dependent CaseZouaoui Chikr Elmezouar0Fatimah Alshahrani1Ibrahim M. Almanjahie2Zoulikha Kaid3Ali Laksaci4Mustapha Rachdi5Department of Mathematics, College of Science, King Khalid University, Abha 62223, Saudi ArabiaDepartment of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi ArabiaDepartment of Mathematics, College of Science, King Khalid University, Abha 62223, Saudi ArabiaDepartment of Mathematics, College of Science, King Khalid University, Abha 62223, Saudi ArabiaDepartment of Mathematics, College of Science, King Khalid University, Abha 62223, Saudi ArabiaLaboratory AGEIS, University of Grenoble Alpes, UFR SHS, BP. 47, Cedex 09, F38040 Grenoble, FranceAnalyzing the co-variability between the Hilbert regressor and the scalar output variable is crucial in functional statistics. In this contribution, the kernel smoothing of the Relative Error Regression (RE-regression) is used to resolve this problem. Precisely, we use the relative square error to establish an estimator of the Hilbertian regression. As asymptotic results, the Hilbertian observations are assumed to be quasi-associated, and we demonstrate the almost complete consistency of the constructed estimator. The feasibility of this Hilbertian model as a predictor in functional time series data is discussed. Moreover, we give some practical ideas for selecting the smoothing parameter based on the bootstrap procedure. Finally, an empirical investigation is performed to examine the behavior of the RE-regression estimation and its superiority in practice.https://www.mdpi.com/2075-1680/12/7/613complete convergence (a.co.)relative error regressionnonparametric predictionkernel methodbandwidth parameterfunctional data
spellingShingle Zouaoui Chikr Elmezouar
Fatimah Alshahrani
Ibrahim M. Almanjahie
Zoulikha Kaid
Ali Laksaci
Mustapha Rachdi
Scalar-on-Function Relative Error Regression for Weak Dependent Case
Axioms
complete convergence (a.co.)
relative error regression
nonparametric prediction
kernel method
bandwidth parameter
functional data
title Scalar-on-Function Relative Error Regression for Weak Dependent Case
title_full Scalar-on-Function Relative Error Regression for Weak Dependent Case
title_fullStr Scalar-on-Function Relative Error Regression for Weak Dependent Case
title_full_unstemmed Scalar-on-Function Relative Error Regression for Weak Dependent Case
title_short Scalar-on-Function Relative Error Regression for Weak Dependent Case
title_sort scalar on function relative error regression for weak dependent case
topic complete convergence (a.co.)
relative error regression
nonparametric prediction
kernel method
bandwidth parameter
functional data
url https://www.mdpi.com/2075-1680/12/7/613
work_keys_str_mv AT zouaouichikrelmezouar scalaronfunctionrelativeerrorregressionforweakdependentcase
AT fatimahalshahrani scalaronfunctionrelativeerrorregressionforweakdependentcase
AT ibrahimmalmanjahie scalaronfunctionrelativeerrorregressionforweakdependentcase
AT zoulikhakaid scalaronfunctionrelativeerrorregressionforweakdependentcase
AT alilaksaci scalaronfunctionrelativeerrorregressionforweakdependentcase
AT mustapharachdi scalaronfunctionrelativeerrorregressionforweakdependentcase