Assessing the Precision of Radon Measurements from Beta-Attenuation Monitors
Atmospheric radon measurements assist in many aspects of climate and meteorological research, notably as an airmass tracer and for modelling boundary layer development, mixing heights and stability. Daughter products from radon decay are sometimes incorporated into the particle pollution measurement...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-01-01
|
Series: | Atmosphere |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4433/15/1/83 |
_version_ | 1827372787320225792 |
---|---|
author | Matthew L. Riley Ningbo Jiang Gunaratnam Gunashanhar Scott Thompson |
author_facet | Matthew L. Riley Ningbo Jiang Gunaratnam Gunashanhar Scott Thompson |
author_sort | Matthew L. Riley |
collection | DOAJ |
description | Atmospheric radon measurements assist in many aspects of climate and meteorological research, notably as an airmass tracer and for modelling boundary layer development, mixing heights and stability. Daughter products from radon decay are sometimes incorporated into the particle pollution measurements of commercially available beta-attenuation monitors (BAM). BAMs incorporating radon measurements are used in air quality monitoring networks and can supplement traditional radon measurements. Here we compare in-situ radon measurements from Thermo Fisher Scientific (Franklin, MA, USA) BAM instruments (Thermo Scientific 5014i, Thermo Scientific 5030 SHARP, Thermo Anderson FH62C14) at two air quality monitoring stations in New South Wales, Australia. Between systems we find strong correlations for hourly measurements (r = 0.97–0.99); daily means (r = 0.97–0.99); hour of the day (r = 0.84–0.98); and month (r = 0.82–0.98). The regression analysis for radon measurements between systems showed strong linear responses, although there are some variations in the slopes of the regressions. This implies that with correction BAM measurements can be comparable to standard measurement techniques, for example, from the Australian Nuclear Science and Technology Organisation (ANSTO) dual flow loop monitors. Our findings imply that BAM derived radon measurements are precise, although their accuracy varies. BAM radon measurements can support studies on boundary layer development or where radon is used as an atmospheric transport tracer. |
first_indexed | 2024-03-08T11:06:23Z |
format | Article |
id | doaj.art-77d87082c28a4cf58de532e2dd760964 |
institution | Directory Open Access Journal |
issn | 2073-4433 |
language | English |
last_indexed | 2024-03-08T11:06:23Z |
publishDate | 2024-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Atmosphere |
spelling | doaj.art-77d87082c28a4cf58de532e2dd7609642024-01-26T15:02:13ZengMDPI AGAtmosphere2073-44332024-01-011518310.3390/atmos15010083Assessing the Precision of Radon Measurements from Beta-Attenuation MonitorsMatthew L. Riley0Ningbo Jiang1Gunaratnam Gunashanhar2Scott Thompson3New South Wales Department of Planning and Environment, Sydney 2141, AustraliaNew South Wales Department of Planning and Environment, Sydney 2141, AustraliaNew South Wales Department of Planning and Environment, Sydney 2141, AustraliaNew South Wales Department of Planning and Environment, Sydney 2141, AustraliaAtmospheric radon measurements assist in many aspects of climate and meteorological research, notably as an airmass tracer and for modelling boundary layer development, mixing heights and stability. Daughter products from radon decay are sometimes incorporated into the particle pollution measurements of commercially available beta-attenuation monitors (BAM). BAMs incorporating radon measurements are used in air quality monitoring networks and can supplement traditional radon measurements. Here we compare in-situ radon measurements from Thermo Fisher Scientific (Franklin, MA, USA) BAM instruments (Thermo Scientific 5014i, Thermo Scientific 5030 SHARP, Thermo Anderson FH62C14) at two air quality monitoring stations in New South Wales, Australia. Between systems we find strong correlations for hourly measurements (r = 0.97–0.99); daily means (r = 0.97–0.99); hour of the day (r = 0.84–0.98); and month (r = 0.82–0.98). The regression analysis for radon measurements between systems showed strong linear responses, although there are some variations in the slopes of the regressions. This implies that with correction BAM measurements can be comparable to standard measurement techniques, for example, from the Australian Nuclear Science and Technology Organisation (ANSTO) dual flow loop monitors. Our findings imply that BAM derived radon measurements are precise, although their accuracy varies. BAM radon measurements can support studies on boundary layer development or where radon is used as an atmospheric transport tracer.https://www.mdpi.com/2073-4433/15/1/83radonbeta attenuation monitor (BAM)air quality monitoring networks |
spellingShingle | Matthew L. Riley Ningbo Jiang Gunaratnam Gunashanhar Scott Thompson Assessing the Precision of Radon Measurements from Beta-Attenuation Monitors Atmosphere radon beta attenuation monitor (BAM) air quality monitoring networks |
title | Assessing the Precision of Radon Measurements from Beta-Attenuation Monitors |
title_full | Assessing the Precision of Radon Measurements from Beta-Attenuation Monitors |
title_fullStr | Assessing the Precision of Radon Measurements from Beta-Attenuation Monitors |
title_full_unstemmed | Assessing the Precision of Radon Measurements from Beta-Attenuation Monitors |
title_short | Assessing the Precision of Radon Measurements from Beta-Attenuation Monitors |
title_sort | assessing the precision of radon measurements from beta attenuation monitors |
topic | radon beta attenuation monitor (BAM) air quality monitoring networks |
url | https://www.mdpi.com/2073-4433/15/1/83 |
work_keys_str_mv | AT matthewlriley assessingtheprecisionofradonmeasurementsfrombetaattenuationmonitors AT ningbojiang assessingtheprecisionofradonmeasurementsfrombetaattenuationmonitors AT gunaratnamgunashanhar assessingtheprecisionofradonmeasurementsfrombetaattenuationmonitors AT scottthompson assessingtheprecisionofradonmeasurementsfrombetaattenuationmonitors |