Formation and thermal stability of connected hard skeleton structure in ATX525 cast alloys
The formation and the thermal stability of a connected hard skeleton structure (CHSS) in the matrix of Mg-5Al-2Sn-5Ca (ATX525) alloy were investigated by using X-ray diffractometer, scanning electron microscopy, differential scanning calorimeter, creep tester and isothermal treatment method. The res...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Foundry Journal Agency
2015-11-01
|
Series: | China Foundry |
Subjects: | |
Online Access: | http://ff.foundryworld.com/uploadfile/2015121550290029.pdf |
Summary: | The formation and the thermal stability of a connected hard skeleton structure (CHSS) in the matrix of Mg-5Al-2Sn-5Ca (ATX525) alloy were investigated by using X-ray diffractometer, scanning electron microscopy, differential scanning calorimeter, creep tester and isothermal treatment method. The results indicated that the CHSS composed of Mg2(Al,Ca) and Al2Ca intermetallics was formed into a typical eutectic structure and no obvious change occurred when the samples were isothermally treated at 250 °C for 96 h and 350 °C for 72 h, respectively. It became a chained structure when isothermally treated at 450 °C for 48 h. The dissolution and reconstruction processes, however, were observed for the CHSS when the processing temperature was up to 550 °C. The creep life at the stress-temperature condition of 50MPa/200°C for the alloy treated at 450 °C for 48 h was as high as 510 h, and the strain at creep time of 100 h was as low as 0.03%, which indicated that the present alloy has not only a good thermal stability, but also a better heat resistance. |
---|---|
ISSN: | 1672-6421 1672-6421 |