Age Analysis of Status Updating System with Probabilistic Packet Preemption

The age of information (AoI) metric was proposed to measure the freshness of messages obtained at the terminal node of a status updating system. In this paper, the AoI of a discrete time status updating system with probabilistic packet preemption is investigated by analyzing the steady state of a th...

Full description

Bibliographic Details
Main Authors: Jixiang Zhang, Yinfei Xu
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/6/785
_version_ 1797487711208079360
author Jixiang Zhang
Yinfei Xu
author_facet Jixiang Zhang
Yinfei Xu
author_sort Jixiang Zhang
collection DOAJ
description The age of information (AoI) metric was proposed to measure the freshness of messages obtained at the terminal node of a status updating system. In this paper, the AoI of a discrete time status updating system with probabilistic packet preemption is investigated by analyzing the steady state of a three-dimensional discrete stochastic process. We assume that the queue used in the system is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>e</mi><mi>r</mi><mo>/</mo><mi>G</mi><mi>e</mi><mi>o</mi><mo>/</mo><mn>1</mn><mo>/</mo><msup><mn>2</mn><mo>*</mo></msup><mo>/</mo><mi>η</mi></mrow></semantics></math></inline-formula>, which represents that the system size is 2 and the packet in the buffer can be preempted by a fresher packet with probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>. Instead of considering the system’s AoI separately, we use a three-dimensional state vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></semantics></math></inline-formula> to simultaneously track the real-time changes of the AoI, the age of a packet in the server, and the age of a packet waiting in the buffer. We give the explicit expression of the system’s average AoI and show that the average AoI of the system without packet preemption is obtained by letting <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> is set to 1, the mean of the AoI of the system with a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>e</mi><mi>r</mi><mo>/</mo><mi>G</mi><mi>e</mi><mi>o</mi><mo>/</mo><mn>1</mn><mo>/</mo><msup><mn>2</mn><mo>*</mo></msup></mrow></semantics></math></inline-formula> queue is obtained as well. Combining the results we have obtained and comparing them with corresponding average continuous AoIs, we propose a possible relationship between the average discrete AoI with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>e</mi><mi>r</mi><mo>/</mo><mi>G</mi><mi>e</mi><mi>o</mi><mo>/</mo><mn>1</mn><mo>/</mo><mi>c</mi></mrow></semantics></math></inline-formula> queue and the average continuous AoI with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>/</mo><mi>M</mi><mo>/</mo><mn>1</mn><mo>/</mo><mi>c</mi></mrow></semantics></math></inline-formula> queue. For each of two extreme cases where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, we also determine the stationary distribution of AoI using the probability generation function (PGF) method. The relations between the average AoI and the packet preemption probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>, as well as the AoI’s distribution curves in two extreme cases, are illustrated by numerical simulations. Notice that the probabilistic packet preemption may occur, for example, in an energy harvest (EH) node of a wireless sensor network, where the packet in the buffer can be replaced only when the node collects enough energy. In particular, to exhibit the usefulness of our idea and methods and highlight the merits of considering discrete time systems, in this paper, we provide detailed discussions showing how the results about continuous AoI are derived by analyzing the corresponding discrete time system and how the discrete age analysis is generalized to the system with multiple sources. In terms of packet service process, we also propose an idea to analyze the AoI of a system when the service time distribution is arbitrary.
first_indexed 2024-03-09T23:51:37Z
format Article
id doaj.art-77e21d4d19e347e9bfdd2c8f9ffb0edd
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-09T23:51:37Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-77e21d4d19e347e9bfdd2c8f9ffb0edd2023-11-23T16:33:05ZengMDPI AGEntropy1099-43002022-06-0124678510.3390/e24060785Age Analysis of Status Updating System with Probabilistic Packet PreemptionJixiang Zhang0Yinfei Xu1School of Information Science and Engineering, Southeast University, Nanjing 210096, ChinaSchool of Information Science and Engineering, Southeast University, Nanjing 210096, ChinaThe age of information (AoI) metric was proposed to measure the freshness of messages obtained at the terminal node of a status updating system. In this paper, the AoI of a discrete time status updating system with probabilistic packet preemption is investigated by analyzing the steady state of a three-dimensional discrete stochastic process. We assume that the queue used in the system is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>e</mi><mi>r</mi><mo>/</mo><mi>G</mi><mi>e</mi><mi>o</mi><mo>/</mo><mn>1</mn><mo>/</mo><msup><mn>2</mn><mo>*</mo></msup><mo>/</mo><mi>η</mi></mrow></semantics></math></inline-formula>, which represents that the system size is 2 and the packet in the buffer can be preempted by a fresher packet with probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>. Instead of considering the system’s AoI separately, we use a three-dimensional state vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>,</mo><mi>l</mi><mo>)</mo></mrow></semantics></math></inline-formula> to simultaneously track the real-time changes of the AoI, the age of a packet in the server, and the age of a packet waiting in the buffer. We give the explicit expression of the system’s average AoI and show that the average AoI of the system without packet preemption is obtained by letting <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula> is set to 1, the mean of the AoI of the system with a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>e</mi><mi>r</mi><mo>/</mo><mi>G</mi><mi>e</mi><mi>o</mi><mo>/</mo><mn>1</mn><mo>/</mo><msup><mn>2</mn><mo>*</mo></msup></mrow></semantics></math></inline-formula> queue is obtained as well. Combining the results we have obtained and comparing them with corresponding average continuous AoIs, we propose a possible relationship between the average discrete AoI with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>e</mi><mi>r</mi><mo>/</mo><mi>G</mi><mi>e</mi><mi>o</mi><mo>/</mo><mn>1</mn><mo>/</mo><mi>c</mi></mrow></semantics></math></inline-formula> queue and the average continuous AoI with the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mo>/</mo><mi>M</mi><mo>/</mo><mn>1</mn><mo>/</mo><mi>c</mi></mrow></semantics></math></inline-formula> queue. For each of two extreme cases where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>η</mi><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula>, we also determine the stationary distribution of AoI using the probability generation function (PGF) method. The relations between the average AoI and the packet preemption probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>η</mi></semantics></math></inline-formula>, as well as the AoI’s distribution curves in two extreme cases, are illustrated by numerical simulations. Notice that the probabilistic packet preemption may occur, for example, in an energy harvest (EH) node of a wireless sensor network, where the packet in the buffer can be replaced only when the node collects enough energy. In particular, to exhibit the usefulness of our idea and methods and highlight the merits of considering discrete time systems, in this paper, we provide detailed discussions showing how the results about continuous AoI are derived by analyzing the corresponding discrete time system and how the discrete age analysis is generalized to the system with multiple sources. In terms of packet service process, we also propose an idea to analyze the AoI of a system when the service time distribution is arbitrary.https://www.mdpi.com/1099-4300/24/6/785age of informationdiscrete time status updating systemprobabilistic preemptionprobability generation functionstationary distribution
spellingShingle Jixiang Zhang
Yinfei Xu
Age Analysis of Status Updating System with Probabilistic Packet Preemption
Entropy
age of information
discrete time status updating system
probabilistic preemption
probability generation function
stationary distribution
title Age Analysis of Status Updating System with Probabilistic Packet Preemption
title_full Age Analysis of Status Updating System with Probabilistic Packet Preemption
title_fullStr Age Analysis of Status Updating System with Probabilistic Packet Preemption
title_full_unstemmed Age Analysis of Status Updating System with Probabilistic Packet Preemption
title_short Age Analysis of Status Updating System with Probabilistic Packet Preemption
title_sort age analysis of status updating system with probabilistic packet preemption
topic age of information
discrete time status updating system
probabilistic preemption
probability generation function
stationary distribution
url https://www.mdpi.com/1099-4300/24/6/785
work_keys_str_mv AT jixiangzhang ageanalysisofstatusupdatingsystemwithprobabilisticpacketpreemption
AT yinfeixu ageanalysisofstatusupdatingsystemwithprobabilisticpacketpreemption