In silico designing and molecular docking of a potent analog against Staphylococcus aureus porphobilinogen synthase

Background: The emergence of multidrug-resistant strains of Staphylococcus aureus, there is an urgent need for the development of new antimicrobials which are narrow and pathogen specific. Aim: In this context, the present study is aimed to have a control on the staphylococcal infections by targetin...

Full description

Bibliographic Details
Main Authors: Pasupuleti Santhosh Kumar, Yellapu Nanda Kumar, Uppu Venkateswara Prasad, Sthanikam Yeswanth, Vimjam Swarupa, Gopal Sowjenya, Katari Venkatesh, Lokanathan Srikanth, Valasani Koteswara Rao, Potukuchi Venkata Gurunatha Krishna Sarma
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2014-01-01
Series:Journal of Pharmacy and Bioallied Sciences
Subjects:
Online Access:http://www.jpbsonline.org/article.asp?issn=0975-7406;year=2014;volume=6;issue=3;spage=158;epage=166;aulast=Kumar
_version_ 1818409045019590656
author Pasupuleti Santhosh Kumar
Yellapu Nanda Kumar
Uppu Venkateswara Prasad
Sthanikam Yeswanth
Vimjam Swarupa
Gopal Sowjenya
Katari Venkatesh
Lokanathan Srikanth
Valasani Koteswara Rao
Potukuchi Venkata Gurunatha Krishna Sarma
author_facet Pasupuleti Santhosh Kumar
Yellapu Nanda Kumar
Uppu Venkateswara Prasad
Sthanikam Yeswanth
Vimjam Swarupa
Gopal Sowjenya
Katari Venkatesh
Lokanathan Srikanth
Valasani Koteswara Rao
Potukuchi Venkata Gurunatha Krishna Sarma
author_sort Pasupuleti Santhosh Kumar
collection DOAJ
description Background: The emergence of multidrug-resistant strains of Staphylococcus aureus, there is an urgent need for the development of new antimicrobials which are narrow and pathogen specific. Aim: In this context, the present study is aimed to have a control on the staphylococcal infections by targeting the unique and essential enzyme; porphobilinogen synthase (PBGS) catalyzes the condensation of two molecules of δ-aminolevulinic acid, an essential step in the tetrapyrrole biosynthesis. Hence developing therapeutics targeting PBGS will be the promising choice to control and manage the staphylococcal infections. 4,5-dioxovalerate (DV) is known to inhibit PBGS. Materials and Methods: In view of this, in this study, novel dioxovalerate derivatives (DVDs) molecules were designed so as to inhibit PBGS, a potential target of S. aureus and their inhibitory activity was predicted using molecular docking studies by molecular operating environment. The 3D model of PBGS was constructed using Chlorobium vibrioform (Protein Data Bank 1W1Z) as a template by homology modeling method. Results: The built structure was close to the crystal structure with Z score − 8.97. Molecular docking of DVDs into the S. aureus PBGS active site revealed that they are showing strong interaction forming H-bonds with the active sites of K248 and R217. The ligand-receptor complex of DVD13 showed a best docking score of − 14.4555 kcal/mol among DV and all its analogs while the substrate showed docking score of − 13.0392 kcal/mol showing interactions with S199, K217 indicating that DVD13 can influence structural variations on the enzyme and thereby inhibiting the enzyme. Conclusion: The substrate analog DVD13 is showing significant interactions with active site of PBGS and it may be used as a potent inhibitor to control S. aureus infections.
first_indexed 2024-12-14T09:53:22Z
format Article
id doaj.art-77f1b591d1524cad87cd77316584c51c
institution Directory Open Access Journal
issn 0975-7406
0976-4879
language English
last_indexed 2024-12-14T09:53:22Z
publishDate 2014-01-01
publisher Wolters Kluwer Medknow Publications
record_format Article
series Journal of Pharmacy and Bioallied Sciences
spelling doaj.art-77f1b591d1524cad87cd77316584c51c2022-12-21T23:07:28ZengWolters Kluwer Medknow PublicationsJournal of Pharmacy and Bioallied Sciences0975-74060976-48792014-01-016315816610.4103/0975-7406.135246In silico designing and molecular docking of a potent analog against Staphylococcus aureus porphobilinogen synthasePasupuleti Santhosh KumarYellapu Nanda KumarUppu Venkateswara PrasadSthanikam YeswanthVimjam SwarupaGopal SowjenyaKatari VenkateshLokanathan SrikanthValasani Koteswara RaoPotukuchi Venkata Gurunatha Krishna SarmaBackground: The emergence of multidrug-resistant strains of Staphylococcus aureus, there is an urgent need for the development of new antimicrobials which are narrow and pathogen specific. Aim: In this context, the present study is aimed to have a control on the staphylococcal infections by targeting the unique and essential enzyme; porphobilinogen synthase (PBGS) catalyzes the condensation of two molecules of δ-aminolevulinic acid, an essential step in the tetrapyrrole biosynthesis. Hence developing therapeutics targeting PBGS will be the promising choice to control and manage the staphylococcal infections. 4,5-dioxovalerate (DV) is known to inhibit PBGS. Materials and Methods: In view of this, in this study, novel dioxovalerate derivatives (DVDs) molecules were designed so as to inhibit PBGS, a potential target of S. aureus and their inhibitory activity was predicted using molecular docking studies by molecular operating environment. The 3D model of PBGS was constructed using Chlorobium vibrioform (Protein Data Bank 1W1Z) as a template by homology modeling method. Results: The built structure was close to the crystal structure with Z score − 8.97. Molecular docking of DVDs into the S. aureus PBGS active site revealed that they are showing strong interaction forming H-bonds with the active sites of K248 and R217. The ligand-receptor complex of DVD13 showed a best docking score of − 14.4555 kcal/mol among DV and all its analogs while the substrate showed docking score of − 13.0392 kcal/mol showing interactions with S199, K217 indicating that DVD13 can influence structural variations on the enzyme and thereby inhibiting the enzyme. Conclusion: The substrate analog DVD13 is showing significant interactions with active site of PBGS and it may be used as a potent inhibitor to control S. aureus infections.http://www.jpbsonline.org/article.asp?issn=0975-7406;year=2014;volume=6;issue=3;spage=158;epage=166;aulast=KumarDioxovoleratehomology modelingmolecular operating environmentporphobilinogen synthase
spellingShingle Pasupuleti Santhosh Kumar
Yellapu Nanda Kumar
Uppu Venkateswara Prasad
Sthanikam Yeswanth
Vimjam Swarupa
Gopal Sowjenya
Katari Venkatesh
Lokanathan Srikanth
Valasani Koteswara Rao
Potukuchi Venkata Gurunatha Krishna Sarma
In silico designing and molecular docking of a potent analog against Staphylococcus aureus porphobilinogen synthase
Journal of Pharmacy and Bioallied Sciences
Dioxovolerate
homology modeling
molecular operating environment
porphobilinogen synthase
title In silico designing and molecular docking of a potent analog against Staphylococcus aureus porphobilinogen synthase
title_full In silico designing and molecular docking of a potent analog against Staphylococcus aureus porphobilinogen synthase
title_fullStr In silico designing and molecular docking of a potent analog against Staphylococcus aureus porphobilinogen synthase
title_full_unstemmed In silico designing and molecular docking of a potent analog against Staphylococcus aureus porphobilinogen synthase
title_short In silico designing and molecular docking of a potent analog against Staphylococcus aureus porphobilinogen synthase
title_sort in silico designing and molecular docking of a potent analog against staphylococcus aureus porphobilinogen synthase
topic Dioxovolerate
homology modeling
molecular operating environment
porphobilinogen synthase
url http://www.jpbsonline.org/article.asp?issn=0975-7406;year=2014;volume=6;issue=3;spage=158;epage=166;aulast=Kumar
work_keys_str_mv AT pasupuletisanthoshkumar insilicodesigningandmoleculardockingofapotentanalogagainststaphylococcusaureusporphobilinogensynthase
AT yellapunandakumar insilicodesigningandmoleculardockingofapotentanalogagainststaphylococcusaureusporphobilinogensynthase
AT uppuvenkateswaraprasad insilicodesigningandmoleculardockingofapotentanalogagainststaphylococcusaureusporphobilinogensynthase
AT sthanikamyeswanth insilicodesigningandmoleculardockingofapotentanalogagainststaphylococcusaureusporphobilinogensynthase
AT vimjamswarupa insilicodesigningandmoleculardockingofapotentanalogagainststaphylococcusaureusporphobilinogensynthase
AT gopalsowjenya insilicodesigningandmoleculardockingofapotentanalogagainststaphylococcusaureusporphobilinogensynthase
AT katarivenkatesh insilicodesigningandmoleculardockingofapotentanalogagainststaphylococcusaureusporphobilinogensynthase
AT lokanathansrikanth insilicodesigningandmoleculardockingofapotentanalogagainststaphylococcusaureusporphobilinogensynthase
AT valasanikoteswararao insilicodesigningandmoleculardockingofapotentanalogagainststaphylococcusaureusporphobilinogensynthase
AT potukuchivenkatagurunathakrishnasarma insilicodesigningandmoleculardockingofapotentanalogagainststaphylococcusaureusporphobilinogensynthase