Benefits of Using Lode Angle Dependent Fracture Models to Predict Ballistic Limits of Armor Steel
Ductile fracture experiments are carried out at different stress states, strain rates and temperatures on a range of flat Mars 300 steel specimens to calibrate both a plasticity and a fracture model. To predict the onset of fracture a stress state and strain rate-dependent Hosford–Coulomb fracture i...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2018-01-01
|
Series: | EPJ Web of Conferences |
Online Access: | https://doi.org/10.1051/epjconf/201818301052 |
Summary: | Ductile fracture experiments are carried out at different stress states, strain rates and temperatures on a range of flat Mars 300 steel specimens to calibrate both a plasticity and a fracture model. To predict the onset of fracture a stress state and strain rate-dependent Hosford–Coulomb fracture initiation model is used. Single material impact experiments are performed on targets of homogenous and perforated Mars 300 plates by accelerating cylindrical Mars 300 impactors in a single-stage gas gun. It is shown that the chosen modeling approach allows accurate modeling of the plastic response as well as the fracture patterns. |
---|---|
ISSN: | 2100-014X |