Estudo da prevalência da tuberculose: uso de métodos bayesianos Study of the prevalence of tuberculosis using Bayesian methods

Neste artigo, apresentamos estimadores bayesianos para a prevalência de tuberculose usando métodos computacionais de simulação de amostras da distribuição a posteriori de interesse. Em especial, consideramos o uso do amostrador de Gibbs para simular amostras da distribuição a posteriori, e daí encon...

Full description

Bibliographic Details
Main Authors: Jorge Alberto Achcar, Antonio Ruffino Netto
Format: Article
Language:English
Published: Associação Brasileira de Pós-Graduação em Saúde Coletiva 2003-12-01
Series:Revista Brasileira de Epidemiologia
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-790X2003000400012
Description
Summary:Neste artigo, apresentamos estimadores bayesianos para a prevalência de tuberculose usando métodos computacionais de simulação de amostras da distribuição a posteriori de interesse. Em especial, consideramos o uso do amostrador de Gibbs para simular amostras da distribuição a posteriori, e daí encontramos, em uma forma simples, inferências precisas para a prevalência de tuberculose. Em uma aplicação, analisamos os resultados do exame de Rx do tórax no diagnóstico da tuberculose. Com essa aplicação, verificamos que os estimadores bayesianos são simples de se obter e apresentam grande precisão. O uso de métodos computacionais para simulação de amostras como o caso do amostrador de Gibbs tem sido recentemente muito utilizado para análise bayesiana de modelos em bioestatística. Essas técnicas de simulação usando o amostrador de Gibbs são facilmente implementadas e não exigem muito conhecimento computacional, podendo ser programadas em qualquer software disponível. Além disso, essas técnicas podem ser consideradas para o estudo da prevalência de outras doenças.<br>In this paper we present Bayesian estimators of the prevalence of tuberculosis using computational methods for simulation of samples of posterior distribution of interest. We especially considered the Gibbs sampling algorithm to generate samples of posterior distribution, and from these samples we obtained accurate inferences for the prevalence of tuberculosis. In an application, we analyzed the results of lung X-ray tests in the diagnosis of tuberculosis. With this application, we verified that Bayesian estimators are more accurate than some existing estimators usually considered by health researchers. The use of computational methods for simulation of samples as the case of the Gibbs sampling algorithm is becoming very popular for Bayesian analysis in biostatistics. These simulation techniques using the Gibbs sampling algorithm are easily implemented and do not require great computational expertise and usually can be performed using available existing software. We could also consider these techniques for studying the prevalence of other diseases.
ISSN:1415-790X
1980-5497