About the use of the Stokes number for mathematical modeling of two-phase jet flows

The appropriateness of using the Stokes number as a single similitude parameter for representation of the results of research on two-phase jet flows in a criteria form was considered. Numerical modeling with the help of the developed mathematical model of a two-phase turbulent jet was applied. After...

Full description

Bibliographic Details
Main Author: Yu.V. Zuev
Format: Article
Language:English
Published: Kazan Federal University 2019-09-01
Series:Учёные записки Казанского университета. Серия Физико-математические науки
Subjects:
Online Access:https://kpfu.ru/uz-eng-phm-2019-3-2.html
Description
Summary:The appropriateness of using the Stokes number as a single similitude parameter for representation of the results of research on two-phase jet flows in a criteria form was considered. Numerical modeling with the help of the developed mathematical model of a two-phase turbulent jet was applied. After putting the equations of this model in the dimensionless form, the similitude parameters needed for two-phase turbulent jet flow modeling were obtained. One of the criteria for dynamic similarity is the Stokes number, which can be presented as a product of the Reynolds number, the relative diameter of particles, and the relative density of phases. It was shown that the value of the Stokes number is uniquely related to changes in the parameters of the two-phase jet only when its value is smaller than 0.14–0.15. The two-phase jet flows can be geometrically and kinematically similar at higher values of the Stokes number if the equality of the following three criteria of similarity are maintained: Reynolds numbers, relative diameter of particles, and relative density of phases. The obtained results allow avoiding gross errors during generalization of experimental and analytical data on two-phase turbulent jet flows.
ISSN:2541-7746
2500-2198