Investigating the Change Pattern in Adsorption Properties of Soil Media for Non-Polar Organic Contaminants under the Impact of Freezing and Thawing

The adsorption of petroleum hydrocarbons by soils in the unsaturated zone determines the amount that goes into the groundwater. However, the intricate behavior of petroleum hydrocarbon adsorption in soil media under the influence of freeze–thaw conditions in globally prevalent seasonally frozen regi...

Full description

Bibliographic Details
Main Authors: Jingjing Huang, Rong Zhong, Hang Lyu
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/15/14/2515
Description
Summary:The adsorption of petroleum hydrocarbons by soils in the unsaturated zone determines the amount that goes into the groundwater. However, the intricate behavior of petroleum hydrocarbon adsorption in soil media under the influence of freeze–thaw conditions in globally prevalent seasonally frozen regions remains unclear. Alkanes as a non-polar compound are an important part of petroleum hydrocarbons. We conducted field-scale seasonal freeze-thaw experiments using n-dodecane to quantify the dynamic patterns and influencing factors of the physicochemical properties of soil media and their adsorption capacity for petroleum hydrocarbons during different freeze–thaw cycles. Our findings demonstrated that, as the number of natural freeze–thaw cycles increased, the proportion of soil micro-agglomerates rose rapidly, thereby expanding the available adsorption sites and enhancing the adsorption capacity for non-polar organic pollutants. The rise in sorption capacity for the outdoor freeze–thaw experimental group surpassed that of the indoor room-temperature control group by an impressive 75.57%, showing the enhancement of the adsorption capacity for non-polar organic pollutants. Conversely, the decline in soil organic matter content during the later stages of the freeze–thaw process hampered its adsorption performance for non-polar organic pollutants. The decrease in sorption capacity for the outdoor freeze–thaw experimental group surpassed that of the indoor room temperature control group by 77.97%. By shedding light on the adsorption mechanisms of non-polar organic pollutants in soils subjected to freeze–thaw conditions, our research facilitated a comprehensive understanding and predictive modeling of this process. Furthermore, our study provided a scientific foundation for exploring the convergence and migration transformation patterns of other organic compounds in petroleum-contaminated areas within seasonally frozen regions.
ISSN:2073-4441