Evaluation of nano-mechanical properties and morphology of filled polypropylene modified by irradiation
This paper describes the effect of electron beam irradiation on the surface properties (nano-indentation test) of glass fiber filled polypropylene (30%). These nano-mechanical properties were measured by the DSI (Depth Sensing Indentation) method on samples which were non-irradiated and irradiated b...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2017-01-01
|
Series: | MATEC Web of Conferences |
Online Access: | https://doi.org/10.1051/matecconf/201712502042 |
Summary: | This paper describes the effect of electron beam irradiation on the surface properties (nano-indentation test) of glass fiber filled polypropylene (30%). These nano-mechanical properties were measured by the DSI (Depth Sensing Indentation) method on samples which were non-irradiated and irradiated by different doses of the β – radiation (33, 66 and 99 kGy). The purpose of the article is to consider to what extent the irradiation process influences the resulting nano-mechanical properties measured by the DSI method. The polypropylene tested showed significant changes of indentation hardness and modulus. The best results were achieved by irradiation at doses of 99 kGy (increase about 35%) by which the highest nano-mechanical properties of filled polypropylene were achieved. These changes were examined and confirmed by X-ray diffraction and Gel content. |
---|---|
ISSN: | 2261-236X |