Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound
Biogas is produced by a consortium of bacteria and archaea. We studied how the microbiome of poultry litter digestate was affected by time and treatments that enhanced biogas production. The microbiome was analyzed at six, 23, and 42 weeks of incubation. Starting at week seven, the digesters underwe...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-09-01
|
Series: | Microorganisms |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-2607/11/9/2349 |
_version_ | 1797578741941010432 |
---|---|
author | John H. Loughrin Rohan R. Parekh Getahun E. Agga Philip J. Silva Karamat R. Sistani |
author_facet | John H. Loughrin Rohan R. Parekh Getahun E. Agga Philip J. Silva Karamat R. Sistani |
author_sort | John H. Loughrin |
collection | DOAJ |
description | Biogas is produced by a consortium of bacteria and archaea. We studied how the microbiome of poultry litter digestate was affected by time and treatments that enhanced biogas production. The microbiome was analyzed at six, 23, and 42 weeks of incubation. Starting at week seven, the digesters underwent four treatments: control, microaeration with 6 mL air L<sup>−1</sup> digestate per day, treatment with a 1000 Hz sine wave, or treatment with the sound wave and microaeration. Both microaeration and sound enhanced biogas production relative to the control, while their combination was not as effective as microaeration alone. At week six, over 80% of the microbiome of the four digesters was composed of the three phyla Actinobacteria, Proteobacteria, and Firmicutes, with less than 10% Euryarchaeota and Bacteroidetes. At week 23, the digester microbiomes were more diverse with the phyla Spirochaetes, Synergistetes, and Verrucomicrobia increasing in proportion and the abundance of Actinobacteria decreasing. At week 42, Firmicutes, Bacteroidetes, Euryarchaeota, and Actinobacteria were the most dominant phyla, comprising 27.8%, 21.4%, 17.6%, and 12.3% of the microbiome. Other than the relative proportions of Firmicutes being increased and proportions of Bacteroidetes being decreased by the treatments, no systematic shifts in the microbiomes were observed due to treatment. Rather, microbial diversity was enhanced relative to the control. Given that both air and sound treatment increased biogas production, it is likely that they improved poultry litter breakdown to promote microbial growth. |
first_indexed | 2024-03-10T22:26:10Z |
format | Article |
id | doaj.art-78447d9b090d45aebc56843977d44fa1 |
institution | Directory Open Access Journal |
issn | 2076-2607 |
language | English |
last_indexed | 2024-03-10T22:26:10Z |
publishDate | 2023-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Microorganisms |
spelling | doaj.art-78447d9b090d45aebc56843977d44fa12023-11-19T12:04:07ZengMDPI AGMicroorganisms2076-26072023-09-01119234910.3390/microorganisms11092349Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency SoundJohn H. Loughrin0Rohan R. Parekh1Getahun E. Agga2Philip J. Silva3Karamat R. Sistani4United States Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, 2413 Nashville Road, Suite B5, Bowling Green, KY 42101, USAUnited States Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, 2413 Nashville Road, Suite B5, Bowling Green, KY 42101, USAUnited States Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, 2413 Nashville Road, Suite B5, Bowling Green, KY 42101, USAUnited States Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, 2413 Nashville Road, Suite B5, Bowling Green, KY 42101, USAUnited States Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, 2413 Nashville Road, Suite B5, Bowling Green, KY 42101, USABiogas is produced by a consortium of bacteria and archaea. We studied how the microbiome of poultry litter digestate was affected by time and treatments that enhanced biogas production. The microbiome was analyzed at six, 23, and 42 weeks of incubation. Starting at week seven, the digesters underwent four treatments: control, microaeration with 6 mL air L<sup>−1</sup> digestate per day, treatment with a 1000 Hz sine wave, or treatment with the sound wave and microaeration. Both microaeration and sound enhanced biogas production relative to the control, while their combination was not as effective as microaeration alone. At week six, over 80% of the microbiome of the four digesters was composed of the three phyla Actinobacteria, Proteobacteria, and Firmicutes, with less than 10% Euryarchaeota and Bacteroidetes. At week 23, the digester microbiomes were more diverse with the phyla Spirochaetes, Synergistetes, and Verrucomicrobia increasing in proportion and the abundance of Actinobacteria decreasing. At week 42, Firmicutes, Bacteroidetes, Euryarchaeota, and Actinobacteria were the most dominant phyla, comprising 27.8%, 21.4%, 17.6%, and 12.3% of the microbiome. Other than the relative proportions of Firmicutes being increased and proportions of Bacteroidetes being decreased by the treatments, no systematic shifts in the microbiomes were observed due to treatment. Rather, microbial diversity was enhanced relative to the control. Given that both air and sound treatment increased biogas production, it is likely that they improved poultry litter breakdown to promote microbial growth.https://www.mdpi.com/2076-2607/11/9/2349anaerobic digestionbiogasmetagenomicsmethanogenmicroaerationmicrobiome |
spellingShingle | John H. Loughrin Rohan R. Parekh Getahun E. Agga Philip J. Silva Karamat R. Sistani Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound Microorganisms anaerobic digestion biogas metagenomics methanogen microaeration microbiome |
title | Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound |
title_full | Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound |
title_fullStr | Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound |
title_full_unstemmed | Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound |
title_short | Microbiome Diversity of Anaerobic Digesters Is Enhanced by Microaeration and Low Frequency Sound |
title_sort | microbiome diversity of anaerobic digesters is enhanced by microaeration and low frequency sound |
topic | anaerobic digestion biogas metagenomics methanogen microaeration microbiome |
url | https://www.mdpi.com/2076-2607/11/9/2349 |
work_keys_str_mv | AT johnhloughrin microbiomediversityofanaerobicdigestersisenhancedbymicroaerationandlowfrequencysound AT rohanrparekh microbiomediversityofanaerobicdigestersisenhancedbymicroaerationandlowfrequencysound AT getahuneagga microbiomediversityofanaerobicdigestersisenhancedbymicroaerationandlowfrequencysound AT philipjsilva microbiomediversityofanaerobicdigestersisenhancedbymicroaerationandlowfrequencysound AT karamatrsistani microbiomediversityofanaerobicdigestersisenhancedbymicroaerationandlowfrequencysound |