A spiking neural network model of model-free reinforcement learning with high-dimensional sensory input and perceptual ambiguity.
A theoretical framework of reinforcement learning plays an important role in understanding action selection in animals. Spiking neural networks provide a theoretically grounded means to test computational hypotheses on neurally plausible algorithms of reinforcement learning through numerical simulat...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0115620&type=printable |