Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>)

This paper classifies the exact solutions of the Maxwell vacuum equations for the case when the electromagnetic fields and metrics of homogeneous spaces are invariant with respect to the motion group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="in...

Full description

Bibliographic Details
Main Author: Valeriy V. Obukhov
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/2/135
_version_ 1797622419302645760
author Valeriy V. Obukhov
author_facet Valeriy V. Obukhov
author_sort Valeriy V. Obukhov
collection DOAJ
description This paper classifies the exact solutions of the Maxwell vacuum equations for the case when the electromagnetic fields and metrics of homogeneous spaces are invariant with respect to the motion group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mn>3</mn></msub><mrow><mo>(</mo><mi>I</mi><mi>X</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. All the appropriate non-equivalent exact solutions of the Maxwell vacuum equations are found.
first_indexed 2024-03-11T09:10:01Z
format Article
id doaj.art-784ac2463f6842a980429369045e0c0c
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T09:10:01Z
publishDate 2023-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-784ac2463f6842a980429369045e0c0c2023-11-16T19:05:45ZengMDPI AGAxioms2075-16802023-01-0112213510.3390/axioms12020135Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>)Valeriy V. Obukhov0Institute of Scietific Research and Development, Tomsk State Pedagogical University (TSPU), 60 Kievskaya St., 634041 Tomsk, RussiaThis paper classifies the exact solutions of the Maxwell vacuum equations for the case when the electromagnetic fields and metrics of homogeneous spaces are invariant with respect to the motion group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mn>3</mn></msub><mrow><mo>(</mo><mi>I</mi><mi>X</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. All the appropriate non-equivalent exact solutions of the Maxwell vacuum equations are found.https://www.mdpi.com/2075-1680/12/2/135Maxwell equationsKlein–Gordon–Fock equationalgebra of symmetry operatorstheory of symmetrylinear partial differential equations
spellingShingle Valeriy V. Obukhov
Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>)
Axioms
Maxwell equations
Klein–Gordon–Fock equation
algebra of symmetry operators
theory of symmetry
linear partial differential equations
title Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>)
title_full Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>)
title_fullStr Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>)
title_full_unstemmed Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>)
title_short Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>)
title_sort exact solutions of maxwell equations in homogeneous spaces with the group of motions i g i sub 3 sub i ix i
topic Maxwell equations
Klein–Gordon–Fock equation
algebra of symmetry operators
theory of symmetry
linear partial differential equations
url https://www.mdpi.com/2075-1680/12/2/135
work_keys_str_mv AT valeriyvobukhov exactsolutionsofmaxwellequationsinhomogeneousspaceswiththegroupofmotionsigisub3subiixi