Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>)
This paper classifies the exact solutions of the Maxwell vacuum equations for the case when the electromagnetic fields and metrics of homogeneous spaces are invariant with respect to the motion group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="in...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-01-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/12/2/135 |
_version_ | 1797622419302645760 |
---|---|
author | Valeriy V. Obukhov |
author_facet | Valeriy V. Obukhov |
author_sort | Valeriy V. Obukhov |
collection | DOAJ |
description | This paper classifies the exact solutions of the Maxwell vacuum equations for the case when the electromagnetic fields and metrics of homogeneous spaces are invariant with respect to the motion group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mn>3</mn></msub><mrow><mo>(</mo><mi>I</mi><mi>X</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. All the appropriate non-equivalent exact solutions of the Maxwell vacuum equations are found. |
first_indexed | 2024-03-11T09:10:01Z |
format | Article |
id | doaj.art-784ac2463f6842a980429369045e0c0c |
institution | Directory Open Access Journal |
issn | 2075-1680 |
language | English |
last_indexed | 2024-03-11T09:10:01Z |
publishDate | 2023-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj.art-784ac2463f6842a980429369045e0c0c2023-11-16T19:05:45ZengMDPI AGAxioms2075-16802023-01-0112213510.3390/axioms12020135Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>)Valeriy V. Obukhov0Institute of Scietific Research and Development, Tomsk State Pedagogical University (TSPU), 60 Kievskaya St., 634041 Tomsk, RussiaThis paper classifies the exact solutions of the Maxwell vacuum equations for the case when the electromagnetic fields and metrics of homogeneous spaces are invariant with respect to the motion group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mn>3</mn></msub><mrow><mo>(</mo><mi>I</mi><mi>X</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. All the appropriate non-equivalent exact solutions of the Maxwell vacuum equations are found.https://www.mdpi.com/2075-1680/12/2/135Maxwell equationsKlein–Gordon–Fock equationalgebra of symmetry operatorstheory of symmetrylinear partial differential equations |
spellingShingle | Valeriy V. Obukhov Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>) Axioms Maxwell equations Klein–Gordon–Fock equation algebra of symmetry operators theory of symmetry linear partial differential equations |
title | Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>) |
title_full | Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>) |
title_fullStr | Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>) |
title_full_unstemmed | Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>) |
title_short | Exact Solutions of Maxwell Equations in Homogeneous Spaces with the Group of Motions <i>G</i><sub>3</sub>(<i>IX</i>) |
title_sort | exact solutions of maxwell equations in homogeneous spaces with the group of motions i g i sub 3 sub i ix i |
topic | Maxwell equations Klein–Gordon–Fock equation algebra of symmetry operators theory of symmetry linear partial differential equations |
url | https://www.mdpi.com/2075-1680/12/2/135 |
work_keys_str_mv | AT valeriyvobukhov exactsolutionsofmaxwellequationsinhomogeneousspaceswiththegroupofmotionsigisub3subiixi |