Motion of massive particles around a charged Weyl black hole and the geodetic precession of orbiting gyroscopes

Abstract The advanced state of cosmological observations constantly tests the alternative theories of gravity that originate from Einstein’s theory. However, this is not restricted to modifications to general relativity. In this sense, we work in the context of Weyl’s theory, more specifically, on a...

Full description

Bibliographic Details
Main Authors: Mohsen Fathi, Mona Kariminezhaddahka, Marco Olivares, J. R. Villanueva
Format: Article
Language:English
Published: SpringerOpen 2020-05-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-020-7945-3
Description
Summary:Abstract The advanced state of cosmological observations constantly tests the alternative theories of gravity that originate from Einstein’s theory. However, this is not restricted to modifications to general relativity. In this sense, we work in the context of Weyl’s theory, more specifically, on a particular black hole solution for a charged massive source, which is confronted with the classical test of the geodetic precession, to obtain information about the parameters associated with this theory. To fully assess this spacetime, the complete geodesic structure for massive test particles is presented.
ISSN:1434-6044
1434-6052