Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties
The paper describes some biological features of the radioprotective effect of double-stranded RNA preparation. It was found that yeast RNA preparation has a prolonged radioprotective effect after irradiation by a lethal dose of 9.4 Gy. 100 % of animals survive on the 70th day of observation when irr...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders
2020-10-01
|
Series: | Вавиловский журнал генетики и селекции |
Subjects: | |
Online Access: | https://vavilov.elpub.ru/jour/article/view/2780 |
_version_ | 1797214013603446784 |
---|---|
author | G. S. Ritter V. P. Nikolin N. A. Popova A. S. Proskurina P. E. Kisaretova O. S. Taranov T. D. Dubatolova E. V. Dolgova E. A. Potter S. S. Kirikovich Y. R. Efremov S. I. Bayborodin M. V. Romanenko M. I. Meschaninova A. G. Venyaminova N. A. Kolchanov S. S. Bogachev |
author_facet | G. S. Ritter V. P. Nikolin N. A. Popova A. S. Proskurina P. E. Kisaretova O. S. Taranov T. D. Dubatolova E. V. Dolgova E. A. Potter S. S. Kirikovich Y. R. Efremov S. I. Bayborodin M. V. Romanenko M. I. Meschaninova A. G. Venyaminova N. A. Kolchanov S. S. Bogachev |
author_sort | G. S. Ritter |
collection | DOAJ |
description | The paper describes some biological features of the radioprotective effect of double-stranded RNA preparation. It was found that yeast RNA preparation has a prolonged radioprotective effect after irradiation by a lethal dose of 9.4 Gy. 100 % of animals survive on the 70th day of observation when irradiated 1 hour or 4 days after 7 mg RNA preparation injection, 60 % animals survive when irradiated on day 8 or 12. Time parameters of repair of double-stranded breaks induced by gamma rays were estimated. It was found that the injection of the RNA preparation at the time of maximum number of double-stranded breaks, 1 hour after irradiation, reduces the efficacy of radioprotective action compared with the injection 1 hour before irradiation and 4 hours after irradiation. A comparison of the radioprotective effect of the standard radioprotector B-190 and the RNA preparation was made in one experiment. It has been established that the total RNA preparation is more efficacious than B-190. Survival on the 40th day after irradiation was 78 % for the group of mice treated with the RNA preparation and 67 % for those treated with B-190. In the course of analytical studies of the total yeast RNA preparation, it was found that the preparation is a mixture of single-stranded and double-stranded RNA. It was shown that only double-stranded RNA has radioprotective properties. Injection of 160 μg double-stranded RNA protects 100 % of the experimental animals from an absolutely lethal dose of gamma radiation, 9.4 Gy. It was established that the radioprotective effect of double-stranded RNA does not depend on sequence, but depends on its double-stranded form and the presence of “open” ends of the molecule. It is supposed that the radioprotective effect of double-stranded RNA is associated with the participation of RNA molecules in the correct repair of radiation-damaged chromatin in blood stem cells. The hematopoietic pluripotent cells that have survived migrate to the periphery, reach the spleen and actively proliferate. The newly formed cell population restores the hematopoietic and immune systems, which determines the survival of lethally irradiated animals. |
first_indexed | 2024-03-07T16:05:07Z |
format | Article |
id | doaj.art-785a47b5e27645359947c5f4ed081264 |
institution | Directory Open Access Journal |
issn | 2500-3259 |
language | English |
last_indexed | 2024-04-24T11:07:25Z |
publishDate | 2020-10-01 |
publisher | Siberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and Breeders |
record_format | Article |
series | Вавиловский журнал генетики и селекции |
spelling | doaj.art-785a47b5e27645359947c5f4ed0812642024-04-11T15:31:03ZengSiberian Branch of the Russian Academy of Sciences, Federal Research Center Institute of Cytology and Genetics, The Vavilov Society of Geneticists and BreedersВавиловский журнал генетики и селекции2500-32592020-10-0124664365210.18699/VJ20.6581092Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective propertiesG. S. Ritter0V. P. Nikolin1N. A. Popova2A. S. Proskurina3P. E. Kisaretova4O. S. Taranov5T. D. Dubatolova6E. V. Dolgova7E. A. Potter8S. S. Kirikovich9Y. R. Efremov10S. I. Bayborodin11M. V. Romanenko12M. I. Meschaninova13A. G. Venyaminova14N. A. Kolchanov15S. S. Bogachev16Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of SciencesInstitute of Cytology and Genetics of Siberian Branch of the Russian Academy of SciencesInstitute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State UniversityInstitute of Cytology and Genetics of Siberian Branch of the Russian Academy of SciencesInstitute of Cytology and Genetics of Siberian Branch of the Russian Academy of SciencesState Research Center of Virology and Biotechnology “Vector”Institute of Molecular and Cellular Biology of Siberian Branch of the Russian Academy of SciencesInstitute of Cytology and Genetics of Siberian Branch of the Russian Academy of SciencesInstitute of Cytology and Genetics of Siberian Branch of the Russian Academy of SciencesInstitute of Cytology and Genetics of Siberian Branch of the Russian Academy of SciencesInstitute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State UniversityInstitute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State UniversityNovosibirsk State UniversityInstitute of Chemical Biology and Fundamental Medicine of Siberian Branch of the Russian Academy of SciencesInstitute of Chemical Biology and Fundamental Medicine of Siberian Branch of the Russian Academy of SciencesInstitute of Cytology and Genetics of Siberian Branch of the Russian Academy of SciencesInstitute of Cytology and Genetics of Siberian Branch of the Russian Academy of SciencesThe paper describes some biological features of the radioprotective effect of double-stranded RNA preparation. It was found that yeast RNA preparation has a prolonged radioprotective effect after irradiation by a lethal dose of 9.4 Gy. 100 % of animals survive on the 70th day of observation when irradiated 1 hour or 4 days after 7 mg RNA preparation injection, 60 % animals survive when irradiated on day 8 or 12. Time parameters of repair of double-stranded breaks induced by gamma rays were estimated. It was found that the injection of the RNA preparation at the time of maximum number of double-stranded breaks, 1 hour after irradiation, reduces the efficacy of radioprotective action compared with the injection 1 hour before irradiation and 4 hours after irradiation. A comparison of the radioprotective effect of the standard radioprotector B-190 and the RNA preparation was made in one experiment. It has been established that the total RNA preparation is more efficacious than B-190. Survival on the 40th day after irradiation was 78 % for the group of mice treated with the RNA preparation and 67 % for those treated with B-190. In the course of analytical studies of the total yeast RNA preparation, it was found that the preparation is a mixture of single-stranded and double-stranded RNA. It was shown that only double-stranded RNA has radioprotective properties. Injection of 160 μg double-stranded RNA protects 100 % of the experimental animals from an absolutely lethal dose of gamma radiation, 9.4 Gy. It was established that the radioprotective effect of double-stranded RNA does not depend on sequence, but depends on its double-stranded form and the presence of “open” ends of the molecule. It is supposed that the radioprotective effect of double-stranded RNA is associated with the participation of RNA molecules in the correct repair of radiation-damaged chromatin in blood stem cells. The hematopoietic pluripotent cells that have survived migrate to the periphery, reach the spleen and actively proliferate. The newly formed cell population restores the hematopoietic and immune systems, which determines the survival of lethally irradiated animals.https://vavilov.elpub.ru/jour/article/view/2780double-stranded rnab-190spleen coloniesdouble-stranded breaks |
spellingShingle | G. S. Ritter V. P. Nikolin N. A. Popova A. S. Proskurina P. E. Kisaretova O. S. Taranov T. D. Dubatolova E. V. Dolgova E. A. Potter S. S. Kirikovich Y. R. Efremov S. I. Bayborodin M. V. Romanenko M. I. Meschaninova A. G. Venyaminova N. A. Kolchanov S. S. Bogachev Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties Вавиловский журнал генетики и селекции double-stranded rna b-190 spleen colonies double-stranded breaks |
title | Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties |
title_full | Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties |
title_fullStr | Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties |
title_full_unstemmed | Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties |
title_short | Characteristic of the active substance of the Saccharomyces cerevisiae preparation having radioprotective properties |
title_sort | characteristic of the active substance of the saccharomyces cerevisiae preparation having radioprotective properties |
topic | double-stranded rna b-190 spleen colonies double-stranded breaks |
url | https://vavilov.elpub.ru/jour/article/view/2780 |
work_keys_str_mv | AT gsritter characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT vpnikolin characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT napopova characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT asproskurina characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT pekisaretova characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT ostaranov characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT tddubatolova characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT evdolgova characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT eapotter characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT sskirikovich characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT yrefremov characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT sibayborodin characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT mvromanenko characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT mimeschaninova characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT agvenyaminova characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT nakolchanov characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties AT ssbogachev characteristicoftheactivesubstanceofthesaccharomycescerevisiaepreparationhavingradioprotectiveproperties |