Towards breath sensors that are self-powered by design

Piezoelectric materials are widely used to generate electric charge from mechanical deformation or vice versa. These strategies are increasingly common in implantable medical devices, where sensing must be done on small scales. In the case of a flow rate sensor, a sensor’s energy harvesting rate cou...

Full description

Bibliographic Details
Main Authors: Lucy Fitzgerald, Luis Lopez Ruiz, Joe Zhu, John Lach, Daniel Quinn
Format: Article
Language:English
Published: The Royal Society 2022-09-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/10.1098/rsos.220895
Description
Summary:Piezoelectric materials are widely used to generate electric charge from mechanical deformation or vice versa. These strategies are increasingly common in implantable medical devices, where sensing must be done on small scales. In the case of a flow rate sensor, a sensor’s energy harvesting rate could be mapped to that flow rate, making it ‘self-powered by design (SPD)’. Prior fluids-based SPD work has focused on turbulence-driven resonance and has been largely empirical. Here, we explore the possibility of sub-resonant SPD flow sensing in a human airway. We present a physical model of piezoelectric sensing/harvesting in the airway, which we validated with a benchtop experiment. Our work offers a model-based roadmap for implantable SPD sensing solutions. We also use the model to theorize a new form of SPD sensing that can detect broadband flow information.
ISSN:2054-5703