Summary: | The development of neutron imaging facilities provides a growing range of applications in different research fields. The significance of the obtained structural information, among others, depends on the reliability of phase segmentation. We focused on the problem of pore segmentation in low-resolution images and tomography data, taking into consideration possible image corruption in the neutron tomography experiment. Two pore segmentation techniques are proposed. They are the binarization of the enhanced contrast data using the global threshold, and the segmentation using the modified watershed technique—local threshold by watershed. The proposed techniques were compared with a conventional marker-based watershed on the test images simulating low-quality tomography data and on the neutron tomography data of the samples of magnesium potassium phosphate cement (MKP). The obtained results demonstrate the advantages of the proposed techniques over the conventional watershed-based approach.
|