Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques

Thoracoscopic surgical ablation (SA) for atrial fibrillation (AF) has shown to be an effective treatment to restore sinus rhythm in patients with advanced AF. Identifying patients who will not benefit from this procedure would be valuable to improve personalized AF therapy. Machine learning (ML) tec...

Full description

Bibliographic Details
Main Authors: Sarah W. E. Baalman, Ricardo R. Lopes, Lucas A. Ramos, Jolien Neefs, Antoine H. G. Driessen, WimJan P. van Boven, Bas A. J. M. de Mol, Henk A. Marquering, Joris R. de Groot
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Diagnostics
Subjects:
Online Access:https://www.mdpi.com/2075-4418/11/10/1787
_version_ 1797514866083233792
author Sarah W. E. Baalman
Ricardo R. Lopes
Lucas A. Ramos
Jolien Neefs
Antoine H. G. Driessen
WimJan P. van Boven
Bas A. J. M. de Mol
Henk A. Marquering
Joris R. de Groot
author_facet Sarah W. E. Baalman
Ricardo R. Lopes
Lucas A. Ramos
Jolien Neefs
Antoine H. G. Driessen
WimJan P. van Boven
Bas A. J. M. de Mol
Henk A. Marquering
Joris R. de Groot
author_sort Sarah W. E. Baalman
collection DOAJ
description Thoracoscopic surgical ablation (SA) for atrial fibrillation (AF) has shown to be an effective treatment to restore sinus rhythm in patients with advanced AF. Identifying patients who will not benefit from this procedure would be valuable to improve personalized AF therapy. Machine learning (ML) techniques may assist in the improvement of clinical prediction models for patient selection. The aim of this study is to investigate how available baseline characteristics predict AF recurrence after SA using ML techniques. One-hundred-sixty clinical baseline variables were collected from 446 AF patients undergoing SA in our tertiary referral center. Multiple ML models were trained on five outcome measurements, including either all or a number of key variables selected by using the least absolute shrinkage and selection operator (LASSO). There was no difference in model performance between different ML techniques or outcome measurements. Variable selection significantly improved model performance (AUC: 0.73, 95% CI: 0.68–0.77). Subgroup analysis showed a higher model performance in younger patients (<55 years, AUC: 0.82 vs. >55 years, AUC 0.66). Recurrences of AF after SA can be predicted best when using a selection of baseline characteristics, particularly in young patients.
first_indexed 2024-03-10T06:37:36Z
format Article
id doaj.art-78b66d58f6b04a639a0049fb41c832ec
institution Directory Open Access Journal
issn 2075-4418
language English
last_indexed 2024-03-10T06:37:36Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Diagnostics
spelling doaj.art-78b66d58f6b04a639a0049fb41c832ec2023-11-22T17:56:45ZengMDPI AGDiagnostics2075-44182021-09-011110178710.3390/diagnostics11101787Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning TechniquesSarah W. E. Baalman0Ricardo R. Lopes1Lucas A. Ramos2Jolien Neefs3Antoine H. G. Driessen4WimJan P. van Boven5Bas A. J. M. de Mol6Henk A. Marquering7Joris R. de Groot8Heart Centre, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsDepartment of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsDepartment of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsHeart Centre, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsHeart Centre, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsHeart Centre, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsHeart Centre, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsDepartment of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsHeart Centre, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The NetherlandsThoracoscopic surgical ablation (SA) for atrial fibrillation (AF) has shown to be an effective treatment to restore sinus rhythm in patients with advanced AF. Identifying patients who will not benefit from this procedure would be valuable to improve personalized AF therapy. Machine learning (ML) techniques may assist in the improvement of clinical prediction models for patient selection. The aim of this study is to investigate how available baseline characteristics predict AF recurrence after SA using ML techniques. One-hundred-sixty clinical baseline variables were collected from 446 AF patients undergoing SA in our tertiary referral center. Multiple ML models were trained on five outcome measurements, including either all or a number of key variables selected by using the least absolute shrinkage and selection operator (LASSO). There was no difference in model performance between different ML techniques or outcome measurements. Variable selection significantly improved model performance (AUC: 0.73, 95% CI: 0.68–0.77). Subgroup analysis showed a higher model performance in younger patients (<55 years, AUC: 0.82 vs. >55 years, AUC 0.66). Recurrences of AF after SA can be predicted best when using a selection of baseline characteristics, particularly in young patients.https://www.mdpi.com/2075-4418/11/10/1787atrial fibrillationsurgical ablationmachine learning
spellingShingle Sarah W. E. Baalman
Ricardo R. Lopes
Lucas A. Ramos
Jolien Neefs
Antoine H. G. Driessen
WimJan P. van Boven
Bas A. J. M. de Mol
Henk A. Marquering
Joris R. de Groot
Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
Diagnostics
atrial fibrillation
surgical ablation
machine learning
title Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
title_full Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
title_fullStr Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
title_full_unstemmed Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
title_short Prediction of Atrial Fibrillation Recurrence after Thoracoscopic Surgical Ablation Using Machine Learning Techniques
title_sort prediction of atrial fibrillation recurrence after thoracoscopic surgical ablation using machine learning techniques
topic atrial fibrillation
surgical ablation
machine learning
url https://www.mdpi.com/2075-4418/11/10/1787
work_keys_str_mv AT sarahwebaalman predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT ricardorlopes predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT lucasaramos predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT jolienneefs predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT antoinehgdriessen predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT wimjanpvanboven predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT basajmdemol predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT henkamarquering predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques
AT jorisrdegroot predictionofatrialfibrillationrecurrenceafterthoracoscopicsurgicalablationusingmachinelearningtechniques