Unified Approach to Fractional Calculus Images of Special Functions—A Survey

Evaluation of images of special functions under operators of fractional calculus has become a hot topic with hundreds of recently published papers. These are growing daily and we are able to comment here only on a few of them, including also some of the latest of 2019–2020, just for the purpose of i...

Full description

Bibliographic Details
Main Author: Virginia Kiryakova
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/12/2260
_version_ 1827699558981828608
author Virginia Kiryakova
author_facet Virginia Kiryakova
author_sort Virginia Kiryakova
collection DOAJ
description Evaluation of images of special functions under operators of fractional calculus has become a hot topic with hundreds of recently published papers. These are growing daily and we are able to comment here only on a few of them, including also some of the latest of 2019–2020, just for the purpose of illustrating our unified approach. Many authors are producing a flood of results for various operators of fractional order integration and differentiation and their generalizations of different special (and elementary) functions. This effect is natural because there are great varieties of special functions, respectively, of operators of (classical and generalized) fractional calculus, and thus, their combinations amount to a large number. As examples, we mentioned only two such operators from thousands of results found by a Google search. Most of the mentioned works use the same formal and standard procedures. Furthermore, in such results, often the originals and the images are special functions of different kinds, or the images are not recognized as known special functions, and thus are not easy to use. In this survey we present a unified approach to fulfill the mentioned task at once in a general setting and in a well visible form: for the operators of generalized fractional calculus (including also the classical operators of fractional calculus); and for all generalized hypergeometric functions such as <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mi>p</mi></msub><msub><mi mathvariant="sans-serif">Ψ</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mi>p</mi></msub><msub><mi>F</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula>, Fox <i>H</i>- and Meijer <i>G</i>-functions, thus incorporating wide classes of special functions. In this way, a great part of the results in the mentioned publications are well predicted and appear as very special cases of ours. The proposed general scheme is based on a few basic classical results (from the Bateman Project and works by Askey, Lavoie–Osler–Tremblay, etc.) combined with ideas and developments from more than 30 years of author’s research, and reflected in the cited recent works. The main idea is as follows: From one side, the operators considered by other authors are cases of generalized fractional calculus and so, are shown to be (<i>m</i>-times) compositions of weighted Riemann–Lioville, i.e., Erdélyi–Kober operators. On the other side, from each generalized hypergeometric function <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mi>p</mi></msub><msub><mi mathvariant="sans-serif">Ψ</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula> or <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mi>p</mi></msub><msub><mi>F</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula> (<inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mo>≤</mo><mi>q</mi></mrow></semantics></math></inline-formula> or <inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mi>q</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>) we can reach, from the final number of applications of such operators, one of the simplest cases where the classical results are known, for example: to <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mn>0</mn></msub><msub><mi>F</mi><mrow><mi>q</mi><mo>−</mo><mi>p</mi></mrow></msub></mrow></semantics></math></inline-formula> (hyper-Bessel functions, in particular trigonometric functions of order <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mi>p</mi><mo>)</mo></mrow></semantics></math></inline-formula>), <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mn>0</mn></msub><msub><mi>F</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> (exponential function), or <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mn>1</mn></msub><msub><mi>F</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> (beta-distribution of form <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>z</mi><mo>)</mo></mrow><mi>α</mi></msup><msup><mi>z</mi><mi>β</mi></msup><mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The final result, written explicitly, is that any GFC operator (of multiplicity <inline-formula><math display="inline"><semantics><mrow><mi>m</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>) transforms a generalized hypergeometric function into the same kind of special function with indices <i>p</i> and <i>q</i> increased by <i>m</i>.
first_indexed 2024-03-10T13:52:20Z
format Article
id doaj.art-78c677a826ce408f89b0ad99933ee3ed
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T13:52:20Z
publishDate 2020-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-78c677a826ce408f89b0ad99933ee3ed2023-11-21T01:59:05ZengMDPI AGMathematics2227-73902020-12-01812226010.3390/math8122260Unified Approach to Fractional Calculus Images of Special Functions—A SurveyVirginia Kiryakova0Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, BulgariaEvaluation of images of special functions under operators of fractional calculus has become a hot topic with hundreds of recently published papers. These are growing daily and we are able to comment here only on a few of them, including also some of the latest of 2019–2020, just for the purpose of illustrating our unified approach. Many authors are producing a flood of results for various operators of fractional order integration and differentiation and their generalizations of different special (and elementary) functions. This effect is natural because there are great varieties of special functions, respectively, of operators of (classical and generalized) fractional calculus, and thus, their combinations amount to a large number. As examples, we mentioned only two such operators from thousands of results found by a Google search. Most of the mentioned works use the same formal and standard procedures. Furthermore, in such results, often the originals and the images are special functions of different kinds, or the images are not recognized as known special functions, and thus are not easy to use. In this survey we present a unified approach to fulfill the mentioned task at once in a general setting and in a well visible form: for the operators of generalized fractional calculus (including also the classical operators of fractional calculus); and for all generalized hypergeometric functions such as <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mi>p</mi></msub><msub><mi mathvariant="sans-serif">Ψ</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mi>p</mi></msub><msub><mi>F</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula>, Fox <i>H</i>- and Meijer <i>G</i>-functions, thus incorporating wide classes of special functions. In this way, a great part of the results in the mentioned publications are well predicted and appear as very special cases of ours. The proposed general scheme is based on a few basic classical results (from the Bateman Project and works by Askey, Lavoie–Osler–Tremblay, etc.) combined with ideas and developments from more than 30 years of author’s research, and reflected in the cited recent works. The main idea is as follows: From one side, the operators considered by other authors are cases of generalized fractional calculus and so, are shown to be (<i>m</i>-times) compositions of weighted Riemann–Lioville, i.e., Erdélyi–Kober operators. On the other side, from each generalized hypergeometric function <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mi>p</mi></msub><msub><mi mathvariant="sans-serif">Ψ</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula> or <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mi>p</mi></msub><msub><mi>F</mi><mi>q</mi></msub></mrow></semantics></math></inline-formula> (<inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mo>≤</mo><mi>q</mi></mrow></semantics></math></inline-formula> or <inline-formula><math display="inline"><semantics><mrow><mi>p</mi><mo>=</mo><mi>q</mi><mo>+</mo><mn>1</mn></mrow></semantics></math></inline-formula>) we can reach, from the final number of applications of such operators, one of the simplest cases where the classical results are known, for example: to <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mn>0</mn></msub><msub><mi>F</mi><mrow><mi>q</mi><mo>−</mo><mi>p</mi></mrow></msub></mrow></semantics></math></inline-formula> (hyper-Bessel functions, in particular trigonometric functions of order <inline-formula><math display="inline"><semantics><mrow><mo>(</mo><mi>q</mi><mo>−</mo><mi>p</mi><mo>)</mo></mrow></semantics></math></inline-formula>), <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mn>0</mn></msub><msub><mi>F</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> (exponential function), or <inline-formula><math display="inline"><semantics><mrow><msub><mrow></mrow><mn>1</mn></msub><msub><mi>F</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> (beta-distribution of form <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>z</mi><mo>)</mo></mrow><mi>α</mi></msup><msup><mi>z</mi><mi>β</mi></msup><mrow><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The final result, written explicitly, is that any GFC operator (of multiplicity <inline-formula><math display="inline"><semantics><mrow><mi>m</mi><mo>≥</mo><mn>1</mn></mrow></semantics></math></inline-formula>) transforms a generalized hypergeometric function into the same kind of special function with indices <i>p</i> and <i>q</i> increased by <i>m</i>.https://www.mdpi.com/2227-7390/8/12/2260fractional calculus operatorsspecial functionsgeneralized hypergeometric functionsintegral transforms of special functions
spellingShingle Virginia Kiryakova
Unified Approach to Fractional Calculus Images of Special Functions—A Survey
Mathematics
fractional calculus operators
special functions
generalized hypergeometric functions
integral transforms of special functions
title Unified Approach to Fractional Calculus Images of Special Functions—A Survey
title_full Unified Approach to Fractional Calculus Images of Special Functions—A Survey
title_fullStr Unified Approach to Fractional Calculus Images of Special Functions—A Survey
title_full_unstemmed Unified Approach to Fractional Calculus Images of Special Functions—A Survey
title_short Unified Approach to Fractional Calculus Images of Special Functions—A Survey
title_sort unified approach to fractional calculus images of special functions a survey
topic fractional calculus operators
special functions
generalized hypergeometric functions
integral transforms of special functions
url https://www.mdpi.com/2227-7390/8/12/2260
work_keys_str_mv AT virginiakiryakova unifiedapproachtofractionalcalculusimagesofspecialfunctionsasurvey