Adaptive Dynamic Programming-Based Cross-Scale Control of a Hydraulic-Driven Flexible Robotic Manipulator

This paper focuses primarily on adaptive dynamic programming (ADP)-based tracking control of the hydraulic-driven flexible robotic manipulator system (HDFRMS) with varying payloads and uncertainties via singular perturbation theory (SPT). Firstly, the dynamics is derived using a driven Jacobin matri...

Full description

Bibliographic Details
Main Authors: Xiaohua Wei, Jiangang Ye, Jianliang Xu, Zhiguo Tang
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/5/2890
Description
Summary:This paper focuses primarily on adaptive dynamic programming (ADP)-based tracking control of the hydraulic-driven flexible robotic manipulator system (HDFRMS) with varying payloads and uncertainties via singular perturbation theory (SPT). Firstly, the dynamics is derived using a driven Jacobin matrix, which represents the coupling between the hydraulic servo-driven system and rigid–flexible manipulator established using the assumed mode method and Lagrange principle. Furthermore, the whole dynamic model of the manipulator system is decoupled into a second slow subsystem (SSS), a second fast subsystem (SFS) and a first fast subsystem (FFS). The three subsystems can describe a large range of movement, flexible vibration and electro-hydraulic servo control, respectively. Hereafter, an adaptive dynamic programming trajectory tracking control law with a critic-only policy iteration algorithm is presented in the second slow timescale, while both robust optimal control (ROC) in the second first timescale and adaptive sliding mode control (ASMC) in the first fast timescale are also designed using the Lyapunov stability theory. Finally, the numerical simulations are carried out to illustrate the rightness and robustness of the singular perturbation decomposition and proposed composite control algorithm.
ISSN:2076-3417