Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy.

Photosensitizers (PSs) are of crucial importance in the effectiveness of photodynamic therapy (PDT) for cancer. Due to their high reactive oxygen species production and strong absorption in the wavelength range between 650 and 850 nm, where tissue light penetration is rather high, phthalocyanines (P...

Full description

Bibliographic Details
Main Authors: Patrícia M R Pereira, Sandrina Silva, José A S Cavaleiro, Carlos A F Ribeiro, João P C Tomé, Rosa Fernandes
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3999036?pdf=render
_version_ 1818060236300222464
author Patrícia M R Pereira
Sandrina Silva
José A S Cavaleiro
Carlos A F Ribeiro
João P C Tomé
Rosa Fernandes
author_facet Patrícia M R Pereira
Sandrina Silva
José A S Cavaleiro
Carlos A F Ribeiro
João P C Tomé
Rosa Fernandes
author_sort Patrícia M R Pereira
collection DOAJ
description Photosensitizers (PSs) are of crucial importance in the effectiveness of photodynamic therapy (PDT) for cancer. Due to their high reactive oxygen species production and strong absorption in the wavelength range between 650 and 850 nm, where tissue light penetration is rather high, phthalocyanines (Pcs) have been studied as PSs of excellence. In this work, we report the evaluation of a phthalocyanine surrounded by a carbohydrate shell of sixteen galactose units distributed in a dendritic manner (PcGal16) as a new and efficient third generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UM-UC-3. Here, we define the role of galacto-dendritic units in promoting the uptake of a Pc through interaction with GLUT1 and galectin-1. The photoactivation of PcGal16 induces cell death by generating oxidative stress. Although PDT with PcGal16 induces an increase on the activity of antioxidant enzymes immediately after PDT, bladder cancer cells are unable to recover from the PDT-induced damage effects for at least 72 h after treatment. PcGal16 co-localization with galectin-1 and GLUT1 and/or generation of oxidative stress after PcGal16 photoactivation induces changes in the levels of these proteins. Knockdown of galectin-1 and GLUT1, via small interfering RNA (siRNA), in bladder cancer cells decreases intracellular uptake and phototoxicity of PcGal16. The results reported herein show PcGal16 as a promising therapeutic agent for the treatment of bladder cancer, which is the fifth most common type of cancer with the highest rate of recurrence of any cancer.
first_indexed 2024-12-10T13:29:13Z
format Article
id doaj.art-78d4832d3edf4d419f15e5ef5601d3e9
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-10T13:29:13Z
publishDate 2014-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-78d4832d3edf4d419f15e5ef5601d3e92022-12-22T01:47:03ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0194e9552910.1371/journal.pone.0095529Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy.Patrícia M R PereiraSandrina SilvaJosé A S CavaleiroCarlos A F RibeiroJoão P C ToméRosa FernandesPhotosensitizers (PSs) are of crucial importance in the effectiveness of photodynamic therapy (PDT) for cancer. Due to their high reactive oxygen species production and strong absorption in the wavelength range between 650 and 850 nm, where tissue light penetration is rather high, phthalocyanines (Pcs) have been studied as PSs of excellence. In this work, we report the evaluation of a phthalocyanine surrounded by a carbohydrate shell of sixteen galactose units distributed in a dendritic manner (PcGal16) as a new and efficient third generation PSs for PDT against two bladder cancer cell lines, HT-1376 and UM-UC-3. Here, we define the role of galacto-dendritic units in promoting the uptake of a Pc through interaction with GLUT1 and galectin-1. The photoactivation of PcGal16 induces cell death by generating oxidative stress. Although PDT with PcGal16 induces an increase on the activity of antioxidant enzymes immediately after PDT, bladder cancer cells are unable to recover from the PDT-induced damage effects for at least 72 h after treatment. PcGal16 co-localization with galectin-1 and GLUT1 and/or generation of oxidative stress after PcGal16 photoactivation induces changes in the levels of these proteins. Knockdown of galectin-1 and GLUT1, via small interfering RNA (siRNA), in bladder cancer cells decreases intracellular uptake and phototoxicity of PcGal16. The results reported herein show PcGal16 as a promising therapeutic agent for the treatment of bladder cancer, which is the fifth most common type of cancer with the highest rate of recurrence of any cancer.http://europepmc.org/articles/PMC3999036?pdf=render
spellingShingle Patrícia M R Pereira
Sandrina Silva
José A S Cavaleiro
Carlos A F Ribeiro
João P C Tomé
Rosa Fernandes
Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy.
PLoS ONE
title Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy.
title_full Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy.
title_fullStr Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy.
title_full_unstemmed Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy.
title_short Galactodendritic phthalocyanine targets carbohydrate-binding proteins enhancing photodynamic therapy.
title_sort galactodendritic phthalocyanine targets carbohydrate binding proteins enhancing photodynamic therapy
url http://europepmc.org/articles/PMC3999036?pdf=render
work_keys_str_mv AT patriciamrpereira galactodendriticphthalocyaninetargetscarbohydratebindingproteinsenhancingphotodynamictherapy
AT sandrinasilva galactodendriticphthalocyaninetargetscarbohydratebindingproteinsenhancingphotodynamictherapy
AT joseascavaleiro galactodendriticphthalocyaninetargetscarbohydratebindingproteinsenhancingphotodynamictherapy
AT carlosafribeiro galactodendriticphthalocyaninetargetscarbohydratebindingproteinsenhancingphotodynamictherapy
AT joaopctome galactodendriticphthalocyaninetargetscarbohydratebindingproteinsenhancingphotodynamictherapy
AT rosafernandes galactodendriticphthalocyaninetargetscarbohydratebindingproteinsenhancingphotodynamictherapy