Cytosolic Distribution of Metals (Cd, Cu) and Metalloids (As, Se) in Livers and Gonads of Field-Collected Fish Exposed to an Environmental Contamination Gradient: An SEC-ICP-MS Analysis

The distribution of As, Cd, Cu and Se among biomolecules of different molecular weight (MW) in the heat-treated cytosolic fraction of livers and gonads of white suckers (WS; Catostomus commersonii) collected in a reference lake and in a lake subject to multi-metal contamination was investigated. Dis...

Full description

Bibliographic Details
Main Authors: Nastassia Urien, Sabrina Jacob, Patrice Couture, Peter G. C. Campbell
Format: Article
Language:English
Published: MDPI AG 2018-09-01
Series:Environments
Subjects:
Online Access:http://www.mdpi.com/2076-3298/5/9/102
Description
Summary:The distribution of As, Cd, Cu and Se among biomolecules of different molecular weight (MW) in the heat-treated cytosolic fraction of livers and gonads of white suckers (WS; Catostomus commersonii) collected in a reference lake and in a lake subject to multi-metal contamination was investigated. Distribution profiles were obtained by separation of the heat-stable protein and peptide (HSP) fractions using size-exclusion high performance-liquid chromatography, coupled online to an inductively coupled plasma mass spectrometer, to quantify the associated metals. Metal-handling strategies did not vary between the reference and exposed fish, with the exception of As. Cadmium and Cu appeared associated with the heat-stable peptides metallothioneins (MTs), indicating their reasonable detoxification and regulation in WS. In contrast, Se and As were not bound to MTs, but rather, to biomolecules of lower MW (<2 kDa). Arsenic was found associated with the same biomolecules in fish from both lakes, but their proportions changed between reference and exposed fish. For future work, the identification of the Se and As binding biomolecules would be of great interest to determine if these metalloids are detoxified or if, conversely, the biomolecules are metal-sensitive and their binding to Se or As represents a threat for the health of these fish.
ISSN:2076-3298