On Quantum Representation of the Linear Canonical Wavelet Transform

For the efficient identification of quantum states, we propose the notion of linear canonical wavelet transform in the framework of quantum mechanics. Using the machinery of Dirac representation theory and integration within an ordered product of operators, we recast the linear canonical wavelet tra...

Full description

Bibliographic Details
Main Authors: H. M. Srivastava, Firdous A. Shah, Aajaz A. Teali
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/8/9/477
_version_ 1827656131456008192
author H. M. Srivastava
Firdous A. Shah
Aajaz A. Teali
author_facet H. M. Srivastava
Firdous A. Shah
Aajaz A. Teali
author_sort H. M. Srivastava
collection DOAJ
description For the efficient identification of quantum states, we propose the notion of linear canonical wavelet transform in the framework of quantum mechanics. Using the machinery of Dirac representation theory and integration within an ordered product of operators, we recast the linear canonical wavelet transform to a matrix element of the squeezing–displacing operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">U</mi><mrow><mo>(</mo><mi>μ</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mspace width="0.166667em"></mspace><msub><mi mathvariant="script">K</mi><mi>M</mi></msub></mrow></semantics></math></inline-formula> between analyzing vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">⟨</mo><mi>ψ</mi><mo stretchy="false">|</mo></mrow></semantics></math></inline-formula> and two-mode quantum state vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">|</mo><mi>f</mi><mo stretchy="false">⟩</mo></mrow></semantics></math></inline-formula> to be transformed. We also derive the inner product relation and inversion formula for the linear canonical wavelet transform in the realm of quantum mechanics. Lastly, we present an explicit example for the lucid implementation of linear canonical wavelet transform in identifying the quantum states.
first_indexed 2024-03-09T22:18:15Z
format Article
id doaj.art-78dfd3e505124ab3b3a5b7763c692525
institution Directory Open Access Journal
issn 2218-1997
language English
last_indexed 2024-03-09T22:18:15Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Universe
spelling doaj.art-78dfd3e505124ab3b3a5b7763c6925252023-11-23T19:19:10ZengMDPI AGUniverse2218-19972022-09-018947710.3390/universe8090477On Quantum Representation of the Linear Canonical Wavelet TransformH. M. Srivastava0Firdous A. Shah1Aajaz A. Teali2Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, CanadaDepartment of Mathematics, University of Kashmir, South Campus, Anantnag 192101, Jammu and Kashmir, IndiaDepartment of Mathematics, University of Kashmir, South Campus, Anantnag 192101, Jammu and Kashmir, IndiaFor the efficient identification of quantum states, we propose the notion of linear canonical wavelet transform in the framework of quantum mechanics. Using the machinery of Dirac representation theory and integration within an ordered product of operators, we recast the linear canonical wavelet transform to a matrix element of the squeezing–displacing operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">U</mi><mrow><mo>(</mo><mi>μ</mi><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mspace width="0.166667em"></mspace><msub><mi mathvariant="script">K</mi><mi>M</mi></msub></mrow></semantics></math></inline-formula> between analyzing vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">⟨</mo><mi>ψ</mi><mo stretchy="false">|</mo></mrow></semantics></math></inline-formula> and two-mode quantum state vector <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">|</mo><mi>f</mi><mo stretchy="false">⟩</mo></mrow></semantics></math></inline-formula> to be transformed. We also derive the inner product relation and inversion formula for the linear canonical wavelet transform in the realm of quantum mechanics. Lastly, we present an explicit example for the lucid implementation of linear canonical wavelet transform in identifying the quantum states.https://www.mdpi.com/2218-1997/8/9/477waveletlinear canonical transformquantum statesDirac representationinversion formula
spellingShingle H. M. Srivastava
Firdous A. Shah
Aajaz A. Teali
On Quantum Representation of the Linear Canonical Wavelet Transform
Universe
wavelet
linear canonical transform
quantum states
Dirac representation
inversion formula
title On Quantum Representation of the Linear Canonical Wavelet Transform
title_full On Quantum Representation of the Linear Canonical Wavelet Transform
title_fullStr On Quantum Representation of the Linear Canonical Wavelet Transform
title_full_unstemmed On Quantum Representation of the Linear Canonical Wavelet Transform
title_short On Quantum Representation of the Linear Canonical Wavelet Transform
title_sort on quantum representation of the linear canonical wavelet transform
topic wavelet
linear canonical transform
quantum states
Dirac representation
inversion formula
url https://www.mdpi.com/2218-1997/8/9/477
work_keys_str_mv AT hmsrivastava onquantumrepresentationofthelinearcanonicalwavelettransform
AT firdousashah onquantumrepresentationofthelinearcanonicalwavelettransform
AT aajazateali onquantumrepresentationofthelinearcanonicalwavelettransform