Impact of Minutiae Errors in Latent Fingerprint Identification: Assessment and Prediction

We study the impact of minutiae errors in the performance of latent fingerprint identification systems. We perform several experiments in which we remove ground-truth minutiae from latent fingerprints and evaluate the effects on matching score and rank-<i>n</i> identification using two d...

Full description

Bibliographic Details
Main Authors: Octavio Loyola-González, Emilio Francisco Ferreira Mehnert, Aythami Morales, Julian Fierrez, Miguel Angel Medina-Pérez, Raúl Monroy
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/9/4187
_version_ 1797535223060103168
author Octavio Loyola-González
Emilio Francisco Ferreira Mehnert
Aythami Morales
Julian Fierrez
Miguel Angel Medina-Pérez
Raúl Monroy
author_facet Octavio Loyola-González
Emilio Francisco Ferreira Mehnert
Aythami Morales
Julian Fierrez
Miguel Angel Medina-Pérez
Raúl Monroy
author_sort Octavio Loyola-González
collection DOAJ
description We study the impact of minutiae errors in the performance of latent fingerprint identification systems. We perform several experiments in which we remove ground-truth minutiae from latent fingerprints and evaluate the effects on matching score and rank-<i>n</i> identification using two different matchers and the popular NIST SD27 dataset. We observe how missing even one minutia from a fingerprint can have a significant negative impact on the identification performance. Our experimental results show that a fingerprint which has a top rank can be demoted to a bottom rank when two or more minutiae are missed. From our experimental results, we have noticed that some minutiae are more critical than others to correctly identify a latent fingerprint. Based on this finding, we have created a dataset to train several machine learning models trying to predict the impact of each minutia in the matching score of a fingerprint identification system. Finally, our best-trained model can successfully predict if a minutia will increase or decrease the matching score of a latent fingerprint.
first_indexed 2024-03-10T11:42:27Z
format Article
id doaj.art-78f423d44e7042338e01ae53644d319a
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T11:42:27Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-78f423d44e7042338e01ae53644d319a2023-11-21T18:23:33ZengMDPI AGApplied Sciences2076-34172021-05-01119418710.3390/app11094187Impact of Minutiae Errors in Latent Fingerprint Identification: Assessment and PredictionOctavio Loyola-González0Emilio Francisco Ferreira Mehnert1Aythami Morales2Julian Fierrez3Miguel Angel Medina-Pérez4Raúl Monroy5Altair Management Consultants Corp., 303 Wyman St., Suite 300, Waltham, MA 02451, USATecnologico de Monterrey, Carretera al Lago de Guadalupe, Km. 3.5, Atizapán, Estado de Mexico 52926, MexicoBiDA-Lab, Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, SpainBiDA-Lab, Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, 28049 Madrid, SpainTecnologico de Monterrey, Carretera al Lago de Guadalupe, Km. 3.5, Atizapán, Estado de Mexico 52926, MexicoTecnologico de Monterrey, Carretera al Lago de Guadalupe, Km. 3.5, Atizapán, Estado de Mexico 52926, MexicoWe study the impact of minutiae errors in the performance of latent fingerprint identification systems. We perform several experiments in which we remove ground-truth minutiae from latent fingerprints and evaluate the effects on matching score and rank-<i>n</i> identification using two different matchers and the popular NIST SD27 dataset. We observe how missing even one minutia from a fingerprint can have a significant negative impact on the identification performance. Our experimental results show that a fingerprint which has a top rank can be demoted to a bottom rank when two or more minutiae are missed. From our experimental results, we have noticed that some minutiae are more critical than others to correctly identify a latent fingerprint. Based on this finding, we have created a dataset to train several machine learning models trying to predict the impact of each minutia in the matching score of a fingerprint identification system. Finally, our best-trained model can successfully predict if a minutia will increase or decrease the matching score of a latent fingerprint.https://www.mdpi.com/2076-3417/11/9/4187latent fingerprintidentificationminutiaebiometric qualityhuman errorperformance evaluation
spellingShingle Octavio Loyola-González
Emilio Francisco Ferreira Mehnert
Aythami Morales
Julian Fierrez
Miguel Angel Medina-Pérez
Raúl Monroy
Impact of Minutiae Errors in Latent Fingerprint Identification: Assessment and Prediction
Applied Sciences
latent fingerprint
identification
minutiae
biometric quality
human error
performance evaluation
title Impact of Minutiae Errors in Latent Fingerprint Identification: Assessment and Prediction
title_full Impact of Minutiae Errors in Latent Fingerprint Identification: Assessment and Prediction
title_fullStr Impact of Minutiae Errors in Latent Fingerprint Identification: Assessment and Prediction
title_full_unstemmed Impact of Minutiae Errors in Latent Fingerprint Identification: Assessment and Prediction
title_short Impact of Minutiae Errors in Latent Fingerprint Identification: Assessment and Prediction
title_sort impact of minutiae errors in latent fingerprint identification assessment and prediction
topic latent fingerprint
identification
minutiae
biometric quality
human error
performance evaluation
url https://www.mdpi.com/2076-3417/11/9/4187
work_keys_str_mv AT octavioloyolagonzalez impactofminutiaeerrorsinlatentfingerprintidentificationassessmentandprediction
AT emiliofranciscoferreiramehnert impactofminutiaeerrorsinlatentfingerprintidentificationassessmentandprediction
AT aythamimorales impactofminutiaeerrorsinlatentfingerprintidentificationassessmentandprediction
AT julianfierrez impactofminutiaeerrorsinlatentfingerprintidentificationassessmentandprediction
AT miguelangelmedinaperez impactofminutiaeerrorsinlatentfingerprintidentificationassessmentandprediction
AT raulmonroy impactofminutiaeerrorsinlatentfingerprintidentificationassessmentandprediction