Summary: | In this article, monkeypox is studied as a zoonotic poxvirus disease which can occur in humans and other animals due to substitution of the amino acid serine with methionine. We investigate the (+)-catechin, betulinic acid, ursolic acid, quercetin-3-O-galactoside, luteolin-7-O-glucoside, and myricetin in <i>Sarracenia purpurea</i> drugs from Sarraceniaceae family for treating monkeypox disease. This is performed via adsorption onto the surface of (6,6) armchair single-walled carbon nanotube (SWCNT) at the B3LYP/6-311+G (2d,p) level of theory in a water medium as the drug delivery method at 300 K. <i>Sarracenia purpurea</i> has attracted much attention for use in the clinical treatment of monkeypox disease due to the adsorption of its effective compounds of (+)-catechin, betulinic acid, ursolic acid, quercetin-3-O-galactoside, luteolin-7-O-glucoside, and myricetin onto the surface of (6,6) armchair SWCNT, a process which introduces an efficient drug delivery system though NMR, IR and UV-VIS data analysis to the optimized structure. In addition to the lowering of the energy gap (∆E = E <sub>LUMO</sub> − E<sub>HOMO</sub>), HOMO–LUMO energy has illustrated the charge transfer interactions taking place within (+)-catechin, betulinic acid, ursolic acid, quercetin-3-O-galactoside, luteolin-7-O-glucoside, and myricetin. The atomic charges have provided the proper perception of molecular theory and the energies of fundamental molecular orbitals.
|