Control of the Interfacial Instabilities in a circular Hele-Shaw cell oscillating with a periodic angular velocity

The stability of an interface of two viscous immiscible fluids of different densities and confined in a Hele-Shaw cell which is oscillating with periodic angular velocityis investigated. A linear stability analysis of the viscous and time-dependent basic flows, generated by a periodic rotation, leads...

Full description

Bibliographic Details
Main Authors: Bouchgl J., Souhar M.
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:MATEC Web of Conferences
Subjects:
Online Access:https://www.matec-conferences.org/articles/matecconf/pdf/2019/35/matecconf_cmm18_07014.pdf
Description
Summary:The stability of an interface of two viscous immiscible fluids of different densities and confined in a Hele-Shaw cell which is oscillating with periodic angular velocityis investigated. A linear stability analysis of the viscous and time-dependent basic flows, generated by a periodic rotation, leads to a time periodic oscillator describing the evolution of the interface amplitude. In this study, we examine mainly the effect of the frequency of the periodic rotation on the interfacial instability that occurs at the interface.
ISSN:2261-236X