Optimal Control Systems Using Evolutionary Algorithm-Control Input Range Estimation

The closed-loop optimal control systems using the receding horizon control (RHC) structure make predictions based on a process model (PM) to calculate the current control output. In many applications, the optimal prediction over the current prediction horizon is calculated using a metaheuristic algo...

Full description

Bibliographic Details
Main Authors: Viorel Mînzu, Iulian Arama
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Automation
Subjects:
Online Access:https://www.mdpi.com/2673-4052/3/1/5
Description
Summary:The closed-loop optimal control systems using the receding horizon control (RHC) structure make predictions based on a process model (PM) to calculate the current control output. In many applications, the optimal prediction over the current prediction horizon is calculated using a metaheuristic algorithm, such as an evolutionary algorithm (EA). The EAs, as other population-based metaheuristics, have large computational complexity. When integrated into the controller, the EA is carried out at each sampling moment and subjected to a time constraint: the execution time should be smaller than the sampling period. This paper proposes a software module integrated into the controller, called at each sampling moment. The module estimates using the PM integration the future process states, over a short time horizon, for different control input values covering the given technological interval. Only a narrower interval is selected for a ‘good’ evolution of the process, based on the so-called ‘state quality criterion’. The controller will consider only a shrunk control output range for the current sampling period. EA will search for its best prediction inside a smaller domain that does not cause the convergence to be affected. Simulations prove that the computational complexity of the controller will decrease.
ISSN:2673-4052