Quercitrin protects human bronchial epithelial cells from oxidative damage

Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking (CS), with oxidative stress being one key component during its pathogenesis. This study aimed to investigate the effects of quercitrin (QE) on cigarette smoke extract (CSE)-induced cell apoptosis and oxidative stress...

Full description

Bibliographic Details
Main Authors: Yu Dan, Wang Fan, Ye Shuming, Yang Shuo, Yu Ning, Zhou Xinyan, Zhang Nian
Format: Article
Language:English
Published: De Gruyter 2022-02-01
Series:Open Medicine
Subjects:
Online Access:https://doi.org/10.1515/med-2022-0416
Description
Summary:Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking (CS), with oxidative stress being one key component during its pathogenesis. This study aimed to investigate the effects of quercitrin (QE) on cigarette smoke extract (CSE)-induced cell apoptosis and oxidative stress in human bronchial epithelial cells (HBECs) and its underlying mechanism. HBECs were treated with 2% CSE for 24 h to establish in vitro COPD cellular models. CCK-8 assay and flow cytometry analysis were performed to evaluate cell viability and apoptosis, respectively. Western blotting was applied to examine protein levels and ELISA kits were used to examine contents of the indicated oxidant/antioxidant markers. The results demonstrated that CSE promoted apoptosis and suppressed viability of HBECs and QE reversed these effects. CSE caused increase in T-AOC, superoxide dismutase, and glutathione (GSH) peroxidase contents and decrease in MDA, reactive oxygen species , and GSH contents in HBECs, which were rescued by QE treatment. The CSE-induced Nrf2 nuclear translocation and elevation of NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) expression were also reversed by QE in HBECs. The mitogen-activated protein kinase (MAPK) signaling was activated by CSE and further suppressed by QE in HBECs. Collectively, QE exerts a protective role in HBECs against cell apoptosis and oxidative damage via inactivation of the Nrf2/HO-1/NQO1 pathway and the MAPK/ERK pathway.
ISSN:2391-5463