Self-Assembled Hybrid ZnO Nanostructures as Supports for Copper-Based Catalysts in the Hydrogenolysis of Glycerol

This study describes the use of new ZnO/PAAH hybrid nanomaterials (PAAH = polyacrylic acid) as copper catalyst supports for the hydrogenolysis of glycerol. A study of the synthesis parameters (washing process, temperatures of synthesis and calcination) of these hybrid supports has allowed us to vary...

Full description

Bibliographic Details
Main Authors: Lama Omar, Noémie Perret, Stephane Daniele
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/11/4/516
Description
Summary:This study describes the use of new ZnO/PAAH hybrid nanomaterials (PAAH = polyacrylic acid) as copper catalyst supports for the hydrogenolysis of glycerol. A study of the synthesis parameters (washing process, temperatures of synthesis and calcination) of these hybrid supports has allowed us to vary their morphology and specific surface area and ultimately the sizes and dispersion of the copper nanoparticles, and to perform a general analysis of their effects on the catalytic performance of the materials. All catalysts were synthesized by the urea deposition-precipitation method (DPU) and were fully characterized to establish a structure–activity relationship. Optimization of the synthesis and catalytic conditions allowed remarkable yields/conversions of the order of 70% for selectivities in 1,2 propanediol of 90%.
ISSN:2073-4344