Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis
<p>Ammonium and nitrate are major N-containing aerosol components. The deposition of N-containing aerosols has impacts on regional ecology and the biogeochemical cycle. In this study, aerosols in a rural cloud forest (Xitou in Taiwan) were studied using <span class="inline-formula"...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2022-10-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://acp.copernicus.org/articles/22/13001/2022/acp-22-13001-2022.pdf |
_version_ | 1797996773563695104 |
---|---|
author | T.-Y. Chen C.-L. Chen Y.-C. Chen C. C.-K. Chou H. Ren H.-M. Hung |
author_facet | T.-Y. Chen C.-L. Chen Y.-C. Chen C. C.-K. Chou H. Ren H.-M. Hung |
author_sort | T.-Y. Chen |
collection | DOAJ |
description | <p>Ammonium and nitrate are major N-containing aerosol components. The deposition of N-containing aerosols has impacts on regional ecology and the biogeochemical cycle. In this study, aerosols in a rural cloud forest (Xitou in Taiwan) were studied using <span class="inline-formula"><sup>15</sup>N</span> and <span class="inline-formula"><sup>18</sup>O</span>
isotope analysis to assess the sources and formation pathways of the local
N-containing aerosols linking to a metropolitan. Aerosol samples of
different size ranges were collected using a micro-orifice uniform deposit
impactor (MOUDI) on a half-day basis in December 2018. The chemical
functional groups were analyzed using a Fourier-transform infrared
spectroscopy with attenuated total reflection (FTIR-ATR) technique, while the isotope analysis was performed using a gas chromatography–isotope ratio mass spectrometer (GC–IRMS). The average measured aerosol concentration (PM<span class="inline-formula"><sub>10</sub></span>) was 0.98 (ranging from 0.15 to 3.31) and 0.25 (ranging from 0.00 to 1.51) <span class="inline-formula">µg m<sup>−3</sup></span> for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f90e4724eed0b99264aab25fa3c158d0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00001.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e6ded8ec1e912479c230ebdb9e6948ee"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00002.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00002.png"/></svg:svg></span></span>, respectively. In general, a higher concentration than nighttime was observed during the daytime by a factor of 1.5–6, likely due to the transportation of pollutants from upper-stream urban and industrial regions through the local sea breeze combined with valley wind. The presence of fog can further elevate the concentration by a factor of 2–3, resulting from the stronger inversion and lower boundary layer height. The higher <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c758f8e5a6278666d33ae83e108e9e6f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00003.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00003.png"/></svg:svg></span></span> concentration in fine particles under foggy conditions corresponds to submicron-sized <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="42687a47ce11667afdef3248d4b878b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00004.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00004.png"/></svg:svg></span></span> formation via aqueous-phase dissolution with <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="13875b38dd02034385acbae35b139293"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00005.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00005.png"/></svg:svg></span></span> neutralization. Furthermore, the higher RH during fog events shifted the mass distribution of aerosol functional groups to a larger mode size. By comparing the <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> value directly or through the analysis using a statistical isotope mixing model, MixSIAR, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="48e523c9de3975bf53cbb687eb5c8796"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00006.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00006.png"/></svg:svg></span></span> probably originated from the industries, coal-fired power plants (CFPPs), or fertilizer plants, while <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a55c7f68d224cb7e4a0e12eba6d25ce4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00007.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00007.png"/></svg:svg></span></span> might be contributed from the CFPP, industrial or urban sources. The overall <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5bdb875a9c6247a2ef34902b5c0f4866"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00008.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00008.png"/></svg:svg></span></span> is <span class="inline-formula">+</span>72.66 ‰ <span class="inline-formula">±</span> 3.42 ‰, similar to that in other winter Asian studies, suggesting the major formation pathway via <span class="inline-formula">O<sub>3</sub></span> oxidation (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">18</mn></msup><mi mathvariant="normal">O</mi></mrow><mo>=</mo><mo>+</mo><mn mathvariant="normal">72.5</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="890a0063a87dfab7ddd933990605bd45"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00009.svg" width="69pt" height="13pt" src="acp-22-13001-2022-ie00009.png"/></svg:svg></span></span> ‰ to 101.67 ‰). However, a lower <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo><</mo><mo>+</mo><mn mathvariant="normal">67</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="59ea65dec29511fc59a54c7ae0dce396"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00010.svg" width="32pt" height="10pt" src="acp-22-13001-2022-ie00010.png"/></svg:svg></span></span> ‰) for particles less than 0.56 <span class="inline-formula">µm</span> during foggy daytime suggests the local contribution via the peroxyl radical oxidation before partitioning into aerosol phase under foggy conditions. Overall, the <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> distribution profiles as a function of particle size in the studied rural forest site reveal the evolution of aerosol composition from remote coastal regions with chemical processes along the transport process, which can be further affected by weather conditions such as fog events.</p> |
first_indexed | 2024-04-11T10:22:49Z |
format | Article |
id | doaj.art-793dfc9c10d74462b671d5bc2d8c8d0e |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-04-11T10:22:49Z |
publishDate | 2022-10-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-793dfc9c10d74462b671d5bc2d8c8d0e2022-12-22T04:29:41ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-10-0122130011301210.5194/acp-22-13001-2022Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysisT.-Y. Chen0C.-L. Chen1Y.-C. Chen2C. C.-K. Chou3H. Ren4H.-M. Hung5Department of Atmospheric Sciences, National Taiwan University, Taipei, 10617, TaiwanDepartment of Atmospheric Sciences, National Taiwan University, Taipei, 10617, TaiwanDepartment of Geosciences, National Taiwan University, Taipei, 10617, TaiwanResearch Center for Environmental Changes, Academia Sinica, Taipei, 11529, TaiwanDepartment of Geosciences, National Taiwan University, Taipei, 10617, TaiwanDepartment of Atmospheric Sciences, National Taiwan University, Taipei, 10617, Taiwan<p>Ammonium and nitrate are major N-containing aerosol components. The deposition of N-containing aerosols has impacts on regional ecology and the biogeochemical cycle. In this study, aerosols in a rural cloud forest (Xitou in Taiwan) were studied using <span class="inline-formula"><sup>15</sup>N</span> and <span class="inline-formula"><sup>18</sup>O</span> isotope analysis to assess the sources and formation pathways of the local N-containing aerosols linking to a metropolitan. Aerosol samples of different size ranges were collected using a micro-orifice uniform deposit impactor (MOUDI) on a half-day basis in December 2018. The chemical functional groups were analyzed using a Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR) technique, while the isotope analysis was performed using a gas chromatography–isotope ratio mass spectrometer (GC–IRMS). The average measured aerosol concentration (PM<span class="inline-formula"><sub>10</sub></span>) was 0.98 (ranging from 0.15 to 3.31) and 0.25 (ranging from 0.00 to 1.51) <span class="inline-formula">µg m<sup>−3</sup></span> for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f90e4724eed0b99264aab25fa3c158d0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00001.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e6ded8ec1e912479c230ebdb9e6948ee"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00002.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00002.png"/></svg:svg></span></span>, respectively. In general, a higher concentration than nighttime was observed during the daytime by a factor of 1.5–6, likely due to the transportation of pollutants from upper-stream urban and industrial regions through the local sea breeze combined with valley wind. The presence of fog can further elevate the concentration by a factor of 2–3, resulting from the stronger inversion and lower boundary layer height. The higher <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c758f8e5a6278666d33ae83e108e9e6f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00003.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00003.png"/></svg:svg></span></span> concentration in fine particles under foggy conditions corresponds to submicron-sized <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="42687a47ce11667afdef3248d4b878b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00004.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00004.png"/></svg:svg></span></span> formation via aqueous-phase dissolution with <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="13875b38dd02034385acbae35b139293"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00005.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00005.png"/></svg:svg></span></span> neutralization. Furthermore, the higher RH during fog events shifted the mass distribution of aerosol functional groups to a larger mode size. By comparing the <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> value directly or through the analysis using a statistical isotope mixing model, MixSIAR, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="48e523c9de3975bf53cbb687eb5c8796"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00006.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00006.png"/></svg:svg></span></span> probably originated from the industries, coal-fired power plants (CFPPs), or fertilizer plants, while <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a55c7f68d224cb7e4a0e12eba6d25ce4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00007.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00007.png"/></svg:svg></span></span> might be contributed from the CFPP, industrial or urban sources. The overall <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5bdb875a9c6247a2ef34902b5c0f4866"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00008.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00008.png"/></svg:svg></span></span> is <span class="inline-formula">+</span>72.66 ‰ <span class="inline-formula">±</span> 3.42 ‰, similar to that in other winter Asian studies, suggesting the major formation pathway via <span class="inline-formula">O<sub>3</sub></span> oxidation (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">18</mn></msup><mi mathvariant="normal">O</mi></mrow><mo>=</mo><mo>+</mo><mn mathvariant="normal">72.5</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="890a0063a87dfab7ddd933990605bd45"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00009.svg" width="69pt" height="13pt" src="acp-22-13001-2022-ie00009.png"/></svg:svg></span></span> ‰ to 101.67 ‰). However, a lower <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo><</mo><mo>+</mo><mn mathvariant="normal">67</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="59ea65dec29511fc59a54c7ae0dce396"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00010.svg" width="32pt" height="10pt" src="acp-22-13001-2022-ie00010.png"/></svg:svg></span></span> ‰) for particles less than 0.56 <span class="inline-formula">µm</span> during foggy daytime suggests the local contribution via the peroxyl radical oxidation before partitioning into aerosol phase under foggy conditions. Overall, the <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> distribution profiles as a function of particle size in the studied rural forest site reveal the evolution of aerosol composition from remote coastal regions with chemical processes along the transport process, which can be further affected by weather conditions such as fog events.</p>https://acp.copernicus.org/articles/22/13001/2022/acp-22-13001-2022.pdf |
spellingShingle | T.-Y. Chen C.-L. Chen Y.-C. Chen C. C.-K. Chou H. Ren H.-M. Hung Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis Atmospheric Chemistry and Physics |
title | Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis |
title_full | Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis |
title_fullStr | Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis |
title_full_unstemmed | Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis |
title_short | Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis |
title_sort | source apportionment and evolution of n containing aerosols at a rural cloud forest in taiwan by isotope analysis |
url | https://acp.copernicus.org/articles/22/13001/2022/acp-22-13001-2022.pdf |
work_keys_str_mv | AT tychen sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis AT clchen sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis AT ycchen sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis AT cckchou sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis AT hren sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis AT hmhung sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis |