Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis

<p>Ammonium and nitrate are major N-containing aerosol components. The deposition of N-containing aerosols has impacts on regional ecology and the biogeochemical cycle. In this study, aerosols in a rural cloud forest (Xitou in Taiwan) were studied using <span class="inline-formula"...

Full description

Bibliographic Details
Main Authors: T.-Y. Chen, C.-L. Chen, Y.-C. Chen, C. C.-K. Chou, H. Ren, H.-M. Hung
Format: Article
Language:English
Published: Copernicus Publications 2022-10-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/22/13001/2022/acp-22-13001-2022.pdf
_version_ 1797996773563695104
author T.-Y. Chen
C.-L. Chen
Y.-C. Chen
C. C.-K. Chou
H. Ren
H.-M. Hung
author_facet T.-Y. Chen
C.-L. Chen
Y.-C. Chen
C. C.-K. Chou
H. Ren
H.-M. Hung
author_sort T.-Y. Chen
collection DOAJ
description <p>Ammonium and nitrate are major N-containing aerosol components. The deposition of N-containing aerosols has impacts on regional ecology and the biogeochemical cycle. In this study, aerosols in a rural cloud forest (Xitou in Taiwan) were studied using <span class="inline-formula"><sup>15</sup>N</span> and <span class="inline-formula"><sup>18</sup>O</span> isotope analysis to assess the sources and formation pathways of the local N-containing aerosols linking to a metropolitan. Aerosol samples of different size ranges were collected using a micro-orifice uniform deposit impactor (MOUDI) on a half-day basis in December 2018. The chemical functional groups were analyzed using a Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR) technique, while the isotope analysis was performed using a gas chromatography–isotope ratio mass spectrometer (GC–IRMS). The average measured aerosol concentration (PM<span class="inline-formula"><sub>10</sub></span>) was 0.98 (ranging from 0.15 to 3.31) and 0.25 (ranging from 0.00 to 1.51) <span class="inline-formula">µg m<sup>−3</sup></span> for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f90e4724eed0b99264aab25fa3c158d0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00001.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e6ded8ec1e912479c230ebdb9e6948ee"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00002.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00002.png"/></svg:svg></span></span>, respectively. In general, a higher concentration than nighttime was observed during the daytime by a factor of 1.5–6, likely due to the transportation of pollutants from upper-stream urban and industrial regions through the local sea breeze combined with valley wind. The presence of fog can further elevate the concentration by a factor of 2–3, resulting from the stronger inversion and lower boundary layer height. The higher <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c758f8e5a6278666d33ae83e108e9e6f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00003.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00003.png"/></svg:svg></span></span> concentration in fine particles under foggy conditions corresponds to submicron-sized <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="42687a47ce11667afdef3248d4b878b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00004.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00004.png"/></svg:svg></span></span> formation via aqueous-phase dissolution with <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="13875b38dd02034385acbae35b139293"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00005.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00005.png"/></svg:svg></span></span> neutralization. Furthermore, the higher RH during fog events shifted the mass distribution of aerosol functional groups to a larger mode size. By comparing the <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> value directly or through the analysis using a statistical isotope mixing model, MixSIAR, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="48e523c9de3975bf53cbb687eb5c8796"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00006.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00006.png"/></svg:svg></span></span> probably originated from the industries, coal-fired power plants (CFPPs), or fertilizer plants, while <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a55c7f68d224cb7e4a0e12eba6d25ce4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00007.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00007.png"/></svg:svg></span></span> might be contributed from the CFPP, industrial or urban sources. The overall <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5bdb875a9c6247a2ef34902b5c0f4866"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00008.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00008.png"/></svg:svg></span></span> is <span class="inline-formula">+</span>72.66 ‰ <span class="inline-formula">±</span> 3.42 ‰, similar to that in other winter Asian studies, suggesting the major formation pathway via <span class="inline-formula">O<sub>3</sub></span> oxidation (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">18</mn></msup><mi mathvariant="normal">O</mi></mrow><mo>=</mo><mo>+</mo><mn mathvariant="normal">72.5</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="890a0063a87dfab7ddd933990605bd45"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00009.svg" width="69pt" height="13pt" src="acp-22-13001-2022-ie00009.png"/></svg:svg></span></span> ‰ to 101.67 ‰). However, a lower <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>&lt;</mo><mo>+</mo><mn mathvariant="normal">67</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="59ea65dec29511fc59a54c7ae0dce396"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00010.svg" width="32pt" height="10pt" src="acp-22-13001-2022-ie00010.png"/></svg:svg></span></span> ‰) for particles less than 0.56 <span class="inline-formula">µm</span> during foggy daytime suggests the local contribution via the peroxyl radical oxidation before partitioning into aerosol phase under foggy conditions. Overall, the <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> distribution profiles as a function of particle size in the studied rural forest site reveal the evolution of aerosol composition from remote coastal regions with chemical processes along the transport process, which can be further affected by weather conditions such as fog events.</p>
first_indexed 2024-04-11T10:22:49Z
format Article
id doaj.art-793dfc9c10d74462b671d5bc2d8c8d0e
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-04-11T10:22:49Z
publishDate 2022-10-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-793dfc9c10d74462b671d5bc2d8c8d0e2022-12-22T04:29:41ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242022-10-0122130011301210.5194/acp-22-13001-2022Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysisT.-Y. Chen0C.-L. Chen1Y.-C. Chen2C. C.-K. Chou3H. Ren4H.-M. Hung5Department of Atmospheric Sciences, National Taiwan University, Taipei, 10617, TaiwanDepartment of Atmospheric Sciences, National Taiwan University, Taipei, 10617, TaiwanDepartment of Geosciences, National Taiwan University, Taipei, 10617, TaiwanResearch Center for Environmental Changes, Academia Sinica, Taipei, 11529, TaiwanDepartment of Geosciences, National Taiwan University, Taipei, 10617, TaiwanDepartment of Atmospheric Sciences, National Taiwan University, Taipei, 10617, Taiwan<p>Ammonium and nitrate are major N-containing aerosol components. The deposition of N-containing aerosols has impacts on regional ecology and the biogeochemical cycle. In this study, aerosols in a rural cloud forest (Xitou in Taiwan) were studied using <span class="inline-formula"><sup>15</sup>N</span> and <span class="inline-formula"><sup>18</sup>O</span> isotope analysis to assess the sources and formation pathways of the local N-containing aerosols linking to a metropolitan. Aerosol samples of different size ranges were collected using a micro-orifice uniform deposit impactor (MOUDI) on a half-day basis in December 2018. The chemical functional groups were analyzed using a Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR-ATR) technique, while the isotope analysis was performed using a gas chromatography–isotope ratio mass spectrometer (GC–IRMS). The average measured aerosol concentration (PM<span class="inline-formula"><sub>10</sub></span>) was 0.98 (ranging from 0.15 to 3.31) and 0.25 (ranging from 0.00 to 1.51) <span class="inline-formula">µg m<sup>−3</sup></span> for <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f90e4724eed0b99264aab25fa3c158d0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00001.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="e6ded8ec1e912479c230ebdb9e6948ee"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00002.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00002.png"/></svg:svg></span></span>, respectively. In general, a higher concentration than nighttime was observed during the daytime by a factor of 1.5–6, likely due to the transportation of pollutants from upper-stream urban and industrial regions through the local sea breeze combined with valley wind. The presence of fog can further elevate the concentration by a factor of 2–3, resulting from the stronger inversion and lower boundary layer height. The higher <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c758f8e5a6278666d33ae83e108e9e6f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00003.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00003.png"/></svg:svg></span></span> concentration in fine particles under foggy conditions corresponds to submicron-sized <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="42687a47ce11667afdef3248d4b878b5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00004.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00004.png"/></svg:svg></span></span> formation via aqueous-phase dissolution with <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="13875b38dd02034385acbae35b139293"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00005.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00005.png"/></svg:svg></span></span> neutralization. Furthermore, the higher RH during fog events shifted the mass distribution of aerosol functional groups to a larger mode size. By comparing the <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> value directly or through the analysis using a statistical isotope mixing model, MixSIAR, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NH</mi><mn mathvariant="normal">4</mn></msub><mo>+</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="29pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="48e523c9de3975bf53cbb687eb5c8796"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00006.svg" width="29pt" height="14pt" src="acp-22-13001-2022-ie00006.png"/></svg:svg></span></span> probably originated from the industries, coal-fired power plants (CFPPs), or fertilizer plants, while <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="a55c7f68d224cb7e4a0e12eba6d25ce4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00007.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00007.png"/></svg:svg></span></span> might be contributed from the CFPP, industrial or urban sources. The overall <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M14" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="5bdb875a9c6247a2ef34902b5c0f4866"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00008.svg" width="30pt" height="15pt" src="acp-22-13001-2022-ie00008.png"/></svg:svg></span></span> is <span class="inline-formula">+</span>72.66 ‰ <span class="inline-formula">±</span> 3.42 ‰, similar to that in other winter Asian studies, suggesting the major formation pathway via <span class="inline-formula">O<sub>3</sub></span> oxidation (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mrow class="chem"><msup><mi mathvariant="italic">δ</mi><mn mathvariant="normal">18</mn></msup><mi mathvariant="normal">O</mi></mrow><mo>=</mo><mo>+</mo><mn mathvariant="normal">72.5</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="69pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="890a0063a87dfab7ddd933990605bd45"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00009.svg" width="69pt" height="13pt" src="acp-22-13001-2022-ie00009.png"/></svg:svg></span></span> ‰ to 101.67 ‰). However, a lower <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>&lt;</mo><mo>+</mo><mn mathvariant="normal">67</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="32pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="59ea65dec29511fc59a54c7ae0dce396"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-22-13001-2022-ie00010.svg" width="32pt" height="10pt" src="acp-22-13001-2022-ie00010.png"/></svg:svg></span></span> ‰) for particles less than 0.56 <span class="inline-formula">µm</span> during foggy daytime suggests the local contribution via the peroxyl radical oxidation before partitioning into aerosol phase under foggy conditions. Overall, the <span class="inline-formula"><i>δ</i><sup>15</sup>N</span> and <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> distribution profiles as a function of particle size in the studied rural forest site reveal the evolution of aerosol composition from remote coastal regions with chemical processes along the transport process, which can be further affected by weather conditions such as fog events.</p>https://acp.copernicus.org/articles/22/13001/2022/acp-22-13001-2022.pdf
spellingShingle T.-Y. Chen
C.-L. Chen
Y.-C. Chen
C. C.-K. Chou
H. Ren
H.-M. Hung
Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis
Atmospheric Chemistry and Physics
title Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis
title_full Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis
title_fullStr Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis
title_full_unstemmed Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis
title_short Source apportionment and evolution of N-containing aerosols at a rural cloud forest in Taiwan by isotope analysis
title_sort source apportionment and evolution of n containing aerosols at a rural cloud forest in taiwan by isotope analysis
url https://acp.copernicus.org/articles/22/13001/2022/acp-22-13001-2022.pdf
work_keys_str_mv AT tychen sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis
AT clchen sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis
AT ycchen sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis
AT cckchou sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis
AT hren sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis
AT hmhung sourceapportionmentandevolutionofncontainingaerosolsataruralcloudforestintaiwanbyisotopeanalysis