Entanglement-assisted tunneling dynamics of impurities in a double well immersed in a bath of lattice trapped bosons

We unravel the correlated tunneling dynamics of an impurity trapped in a double well and interacting repulsively with a majority species of lattice trapped bosons. Upon quenching the tilt of the double well it is found that the quench-induced tunneling dynamics depends crucially on the interspecies...

Full description

Bibliographic Details
Main Authors: Friethjof Theel, Kevin Keiler, Simeon I Mistakidis, Peter Schmelcher
Format: Article
Language:English
Published: IOP Publishing 2020-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ab6eab
Description
Summary:We unravel the correlated tunneling dynamics of an impurity trapped in a double well and interacting repulsively with a majority species of lattice trapped bosons. Upon quenching the tilt of the double well it is found that the quench-induced tunneling dynamics depends crucially on the interspecies interaction strength and the presence of entanglement inherent in the system. In particular, for weak couplings the impurity performs a rather irregular tunneling process in the double well. Increasing the interspecies coupling it is possible to control the response of the impurity which undergoes a delayed tunneling while the majority species effectively acts as a material barrier. For very strong interspecies interaction strengths the impurity exhibits a self-trapping behavior. We showcase that a similar tunneling dynamics takes place for two weakly interacting impurities and identify its underlying transport mechanisms in terms of pair and single-particle tunneling processes.
ISSN:1367-2630