Liquid Chromatography-Mass Spectrometry-Based Rapid Secondary-Metabolite Profiling of Marine Pseudoalteromonas sp. M2

The ocean is a rich resource of flora, fauna, and food. A wild-type bacterial strain showing confluent growth on marine agar with antibacterial activity was isolated from marine water, identified using 16S rDNA sequence analysis as Pseudoalteromonas sp., and designated as strain M2. This strain was...

Full description

Bibliographic Details
Main Authors: Woo Jung Kim, Young Ok Kim, Jin Hee Kim, Bo-Hye Nam, Dong-Gyun Kim, Cheul Min An, Jun Sik Lee, Pan Soo Kim, Hye Min Lee, Joa-Sup Oh, Jong Suk Lee
Format: Article
Language:English
Published: MDPI AG 2016-01-01
Series:Marine Drugs
Subjects:
Online Access:http://www.mdpi.com/1660-3397/14/1/24
Description
Summary:The ocean is a rich resource of flora, fauna, and food. A wild-type bacterial strain showing confluent growth on marine agar with antibacterial activity was isolated from marine water, identified using 16S rDNA sequence analysis as Pseudoalteromonas sp., and designated as strain M2. This strain was found to produce various secondary metabolites including quinolone alkaloids. Using high-resolution mass spectrometry (MS) and nuclear magnetic resonance (NMR) analysis, we identified nine secondary metabolites of 4-hydroxy-2-alkylquinoline (pseudane-III, IV, V, VI, VII, VIII, IX, X, and XI). Additionally, this strain produced two novel, closely related compounds, 2-isopentylqunoline-4-one and 2-(2,3-dimetylbutyl)qunoline-4-(1H)-one, which have not been previously reported from marine bacteria. From the metabolites produced by Pseudoalteromonas sp. M2, 2-(2,3-dimethylbutyl)quinolin-4-one, pseudane-VI, and pseudane-VII inhibited melanin synthesis in Melan-A cells by 23.0%, 28.2%, and 42.7%, respectively, wherein pseudane-VII showed the highest inhibition at 8 µg/mL. The results of this study suggest that liquid chromatography (LC)-MS/MS-based metabolite screening effectively improves the efficiency of novel metabolite discovery. Additionally, these compounds are promising candidates for further bioactivity development.
ISSN:1660-3397