Application of a Wide-Field Electromagnetic Method for Hot Dry Rock Exploration: A Case Study in the Gonghe Basin, Qinghai, China

Hot dry rock (HDR) is a geothermal resource with a high temperature that is widely distributed and has good potential as a clean and renewable energy source. To determine underground electrical structures and to predict granite reservoir distributions, the wide-field electromagnetic (WFEM) method ha...

Full description

Bibliographic Details
Main Authors: Hui Tan, Fan Ling, Zhenwei Guo, Jie Li, Jiawei Liu
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/11/10/1105
Description
Summary:Hot dry rock (HDR) is a geothermal resource with a high temperature that is widely distributed and has good potential as a clean and renewable energy source. To determine underground electrical structures and to predict granite reservoir distributions, the wide-field electromagnetic (WFEM) method has been applied to explore deep mineral resources and has advantages such as explorations at greater depths and at high resolutions. In this study, a WFEM investigation was carried out for HDR exploration in Gonghe Basin within Qinghai Province. Six parallel survey lines, each spaced apart by 1 km, were designed for WFEM data acquisition. After data processing and inversion, we mapped the subsurface resistivity distribution and divided the inversion resistivity of HDR in the Qiabuqia area into four layers. From the WFEM results, we inferred the location of HDRs, which was verified using drilling wells. HDRs were found at a depth between 3200 m and 3705 m in the well. Furthermore, with the calibration of drilling well GR1, we provided the relationship between temperature and inversion resistivity. From this relationship, the exploration areas with mining potential can be determined.
ISSN:2075-163X