Summary: | Large-scale and periodic remote sensing monitoring of marine raft aquaculture areas is significant for scientific planning of their layout and for promoting sustainable development of marine ecology. Synthetic aperture radar (SAR) is an important tool for stable monitoring of marine raft aquaculture areas since it is all-weather, all-day, and cloud-penetrating. However, the scattering signal of marine raft aquaculture areas is affected by speckle noise and sea state, so their features in SAR images are complex. Thus, it is challenging to extract marine raft aquaculture areas from SAR images. In this paper, we propose a method to extract marine raft aquaculture areas from Sentinel-1 images based on the analysis of the features for marine raft aquaculture areas. First, the data are preprocessed using multitemporal phase synthesis to weaken the noise interference, enhance the signal of marine raft aquaculture areas, and improve the significance of the characteristics of raft aquaculture areas. Second, the geometric features of the marine raft aquaculture area are combined to design the model structure and introduce the shape constraint module, which adds a priori knowledge to guide the model convergence direction during the training process. Experiments verify that the method outperforms the popular semantic segmentation model with an <i>F</i>1 of 84.52%.
|