Cation and anion ordering in synthetic lepidolites and lithian muscovites: influence of the OH ∕ F and Li ∕ Al ratios on the mica formation studied by NMR (nuclear magnetic resonance) spectroscopy and X-ray diffraction

<p>A large number of lepidolites K(Li<span class="inline-formula"><sub><i>x</i></sub></span>Al<span class="inline-formula"><sub>3−<i>x</i></sub></span>)[Si<span class="inline-formula">&l...

Full description

Bibliographic Details
Main Authors: L. Sulcek, B. Marler, M. Fechtelkord
Format: Article
Language:English
Published: Copernicus Publications 2023-03-01
Series:European Journal of Mineralogy
Online Access:https://ejm.copernicus.org/articles/35/199/2023/ejm-35-199-2023.pdf
Description
Summary:<p>A large number of lepidolites K(Li<span class="inline-formula"><sub><i>x</i></sub></span>Al<span class="inline-formula"><sub>3−<i>x</i></sub></span>)[Si<span class="inline-formula"><sub>2<i>x</i></sub></span>Al<span class="inline-formula"><sub>4−2<i>x</i></sub></span>O<span class="inline-formula"><sub>10</sub></span>](OH)<span class="inline-formula"><sub><i>y</i></sub></span>F<span class="inline-formula"><sub>2−<i>y</i></sub></span> and Li-muscovites K(Li<span class="inline-formula"><sub><i>x</i></sub></span>Al<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi/><mrow><mn mathvariant="normal">2</mn><mo>-</mo><mi>x</mi><mo>/</mo><mn mathvariant="normal">3</mn></mrow></msub><msub><mo>□</mo><mrow><mn mathvariant="normal">1</mn><mo>-</mo><mn mathvariant="normal">2</mn><mi>x</mi><mo>/</mo><mn mathvariant="normal">3</mn></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="62pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="5e45994ef1330b1cb9444f3c04d701de"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-35-199-2023-ie00005.svg" width="62pt" height="14pt" src="ejm-35-199-2023-ie00005.png"/></svg:svg></span></span>)[Si<span class="inline-formula"><sub>3</sub></span>AlO<span class="inline-formula"><sub>10</sub></span>](OH)<span class="inline-formula"><sub><i>y</i></sub></span>F<span class="inline-formula"><sub>2−<i>y</i></sub></span> were synthesised by a gelling method in combination with hydrothermal syntheses at a pressure of 2 kbar and a temperature of 873 K. The nominal composition ranged between <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">0.0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn mathvariant="normal">2.0</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="22dcaaadbbc3f512e7e4c1906bb9bf54"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-35-199-2023-ie00006.svg" width="64pt" height="11pt" src="ejm-35-199-2023-ie00006.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">0.0</mn><mo>≤</mo><mi>y</mi><mo>≤</mo><mn mathvariant="normal">2.0</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="25930b3602645311922ba016021999ae"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-35-199-2023-ie00007.svg" width="64pt" height="12pt" src="ejm-35-199-2023-ie00007.png"/></svg:svg></span></span>, i.e. from polylithionite K[Li<span class="inline-formula"><sub>2.0</sub></span>Al][Si<span class="inline-formula"><sub>4.0</sub></span>O<span class="inline-formula"><sub>10</sub></span>](OH)<span class="inline-formula"><sub><i>y</i></sub></span>F<span class="inline-formula"><sub>2−<i>y</i></sub></span> over trilithionite K[Li<span class="inline-formula"><sub>1.5</sub></span>Al<span class="inline-formula"><sub>1.5</sub></span>][AlSi<span class="inline-formula"><sub>3.0</sub></span>O<span class="inline-formula"><sub>10</sub></span>](OH)<span class="inline-formula"><sub><i>y</i></sub></span>F<span class="inline-formula"><sub>2−<i>y</i></sub></span> to muscovite K[Al<span class="inline-formula"><sub>2.0</sub>□</span>][AlSi<span class="inline-formula"><sub>3.0</sub></span>O<span class="inline-formula"><sub>10</sub></span>](OH)<span class="inline-formula"><sub><i>y</i></sub></span>F<span class="inline-formula"><sub>2−<i>y</i></sub></span>. <span class="inline-formula"><sup>1</sup></span>H, <span class="inline-formula"><sup>19</sup></span>F, <span class="inline-formula"><sup>29</sup></span>Si and <span class="inline-formula"><sup>27</sup></span>Al magic-angle spinning nuclear magnetic resonance (MAS NMR) and <span class="inline-formula"><sup>27</sup></span>Al multiple-quantum magic-angle spinning (MQMAS) NMR spectroscopy has been performed to investigate the order and/or disorder state of Si and Al in the tetrahedral layers and of Li, Al, OH and F in the octahedral layer. The synthetic mica crystals are very small, ranging from 0.1 to 5 <span class="inline-formula">µ</span>m. With increasing Al content, the crystal sizes decrease. Rietveld structure analyses on 12 samples showed that nearly all samples consist of two mica polytypes (1M and 2M<span class="inline-formula"><sub>1</sub></span>) of varying proportions. In the case of lepidolites, the 1M <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M41" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="dec69c2f61a2c3df83845e73f901bed1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-35-199-2023-ie00008.svg" width="8pt" height="14pt" src="ejm-35-199-2023-ie00008.png"/></svg:svg></span></span> 2M<span class="inline-formula"><sub>1</sub></span> ratio depends on the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M43" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Li</mi><mo>/</mo><mi mathvariant="normal">Al</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="27pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="46437f94bb53152da39d7025522632f0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-35-199-2023-ie00009.svg" width="27pt" height="14pt" src="ejm-35-199-2023-ie00009.png"/></svg:svg></span></span> ratio of the reaction mixture. The refinement of the occupancy factors of octahedral sites shows that lepidolites (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M44" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">1.5</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn mathvariant="normal">2.0</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="cac6f10755284e66077552368c0f88c0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-35-199-2023-ie00010.svg" width="64pt" height="11pt" src="ejm-35-199-2023-ie00010.png"/></svg:svg></span></span>) represent a solid solution series with polylithionite and trilithionite as the endmembers. In the case of the Li-muscovites (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M45" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">0.0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn mathvariant="normal">1.5</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="e7b7c9056c57963fa804a3f08d7a3a68"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-35-199-2023-ie00011.svg" width="64pt" height="11pt" src="ejm-35-199-2023-ie00011.png"/></svg:svg></span></span>), the 1M <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M46" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="2251cbae0b7d78a459605b060cf1ad8c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-35-199-2023-ie00012.svg" width="8pt" height="14pt" src="ejm-35-199-2023-ie00012.png"/></svg:svg></span></span> 2M<span class="inline-formula"><sub>1</sub></span> ratio depends on the number of impurity phases like eucryptite or sanidine depleting the reaction mixture of Li or Al. There is no solid solution between trilithionite and muscovite; instead, the Li-muscovite crystals consist of domains differing in the relative proportions of muscovite and trilithionite.</p> <p><span id="page200"/>The overall composition of the synthesised micas which consist of two polytypes can be characterised by <span class="inline-formula"><sup>29</sup></span>Si, <span class="inline-formula"><sup>1</sup></span>H and <span class="inline-formula"><sup>19</sup></span>F MAS NMR spectroscopy. The <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M51" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Si</mi><mo>/</mo><mi mathvariant="normal">Al</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="338a392124e9390f7d065bad69fd7727"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-35-199-2023-ie00013.svg" width="28pt" height="14pt" src="ejm-35-199-2023-ie00013.png"/></svg:svg></span></span> ratio in the tetrahedral layers and thus the content of <span class="inline-formula"><sup>[4]</sup></span>Al were calculated by analysing the signal intensities of the <span class="inline-formula"><sup>29</sup></span>Si MAS NMR experiments. The Li content <span class="inline-formula"><i>x</i><sub>est</sub></span> was calculated from the measured tetrahedral <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M55" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><mi mathvariant="normal">Si</mi><mo>/</mo><mi mathvariant="normal">Al</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="28pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c94797c623eb66c17584d7c514d1ecc7"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-35-199-2023-ie00014.svg" width="28pt" height="14pt" src="ejm-35-199-2023-ie00014.png"/></svg:svg></span></span> ratio of the <span class="inline-formula"><sup>29</sup></span>Si MAS NMR signals. The calculated Li contents <span class="inline-formula"><i>x</i><sub>est</sub></span> of samples between polylithionite and trilithionite agree with the expected values. The F-rich samples show slightly increased values and the OH samples lower values. Lepidolites with only F (<span class="inline-formula"><i>x</i></span> <span class="inline-formula">=</span> 1.5 to 2.0, <span class="inline-formula"><i>y</i></span> <span class="inline-formula">=</span> 0.0), but not lepidolites with only OH (<span class="inline-formula"><i>x</i></span> <span class="inline-formula">=</span> 1.5 to 2.0 and <span class="inline-formula"><i>y</i></span> <span class="inline-formula">=</span> 2.0), were observed after synthesis. With decreasing Li content, <span class="inline-formula"><i>x</i>≤1.2</span>, Li-muscovites containing mostly hydroxyl (<span class="inline-formula"><i>y</i>&gt;1.0</span>) are formed. It was possible to synthesise fluorine containing micas with a Li content as low as 0.3 and <span class="inline-formula"><i>y</i></span> <span class="inline-formula">=</span> 0.2 to 1.8. The <span class="inline-formula"><sup>19</sup></span>F and <span class="inline-formula"><sup>1</sup></span>H MAS NMR experiments reveal that F and OH are not distributed statistically but local structural preferences exist. F is attracted by Li-rich and OH by Al-rich environments. The quadrupolar coupling constant which represents the anisotropy of the Al coordination is low for polylithionite with <span class="inline-formula"><i>C</i><sub>Q</sub>=1.5</span> MHz and increases to <span class="inline-formula"><i>C</i><sub>Q</sub>=3.8</span> MHz for trilithionite. For tetrahedral Al a smaller increase of <span class="inline-formula"><i>C</i><sub>Q</sub></span> from 1.7 to 2.8 MHz is observed. Advancing from trilithionite to muscovite both quadrupolar coupling constants decrease to 2.5 MHz for octahedral and 1.5 MHz for tetrahedral Al. In polylithionite there is the most isotropic environment for octahedral Al; there are only Li<span class="inline-formula"><sub>2</sub></span>Al sites coordinated by F in the octahedral sheets and O from the tetrahedral sheets which are regular, containing only Si. The distortion and anisotropy for Al in tetrahedral as well as octahedral sheets increases with rising Al content. The most anisotropic environment can be found in trilithionite, especially for octahedral Al.</p>
ISSN:0935-1221
1617-4011