hsa_circ_0001955 Enhances In Vitro Proliferation, Migration, and Invasion of HCC Cells through miR-145-5p/NRAS Axis

Increasing circular RNAs (circRNAs) have been reported to act as key players in human malignancies. However, the expression, role, and mechanism of circRNAs in HCC are not well elucidated. In this study, some differentially expressed circRNAs (DECs) between hepatocellular carcinoma (HCC) and normal...

Full description

Bibliographic Details
Main Authors: Bisha Ding, Weimin Fan, Weiyang Lou
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Molecular Therapy: Nucleic Acids
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S216225312030278X
Description
Summary:Increasing circular RNAs (circRNAs) have been reported to act as key players in human malignancies. However, the expression, role, and mechanism of circRNAs in HCC are not well elucidated. In this study, some differentially expressed circRNAs (DECs) between hepatocellular carcinoma (HCC) and normal tissues were identified using three circRNA microarrays (Gene Expression Omnibus [GEO]: GSE78520, GSE94508, and GSE97332). Twenty-one DECs were found to be commonly upregulated in all the three datasets. Among the 21 DECs, hsa_circ_0001955 ranked as the top three most upregulated DECs in GEO: GSE78520, GSE94508, and GSE97332. Moreover, hsa_circ_0001955 expression in HCC cells and tissues was significantly higher than that in corresponding normal controls. Functional experiments revealed that knockdown of hsa_circ_0001955 markedly inhibited proliferation, migration, and invasion of HCC, and its overexpression led to the opposite effects. hsa_circ_0001955 was mainly located in the cytoplasm, in which hsa_circ_0001955 could directly bind to miR-145-5p. miR-145-5p was downregulated in HCC, and its expression was negatively linked to hsa_circ_0001955 expression. Furthermore, we identified that NRAS was a downstream direct target of the hsa_circ_0001955/miR-145-5p axis in HCC. Collectively, our findings demonstrate the oncogenic roles of the hsa_circ_0001955/miR-145-5p/NRAS axis in HCC, which may represent a potential therapeutic target for HCC.
ISSN:2162-2531