Nanostructures in Hydrogen Peroxide Sensing

In recent years, several devices have been developed for the direct measurement of hydrogen peroxide (H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></ms...

Full description

Bibliographic Details
Main Authors: Ricardo Matias Trujillo, Daniela Estefanía Barraza, Martin Lucas Zamora, Anna Cattani-Scholz, Rossana Elena Madrid
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/6/2204
_version_ 1827697135245590528
author Ricardo Matias Trujillo
Daniela Estefanía Barraza
Martin Lucas Zamora
Anna Cattani-Scholz
Rossana Elena Madrid
author_facet Ricardo Matias Trujillo
Daniela Estefanía Barraza
Martin Lucas Zamora
Anna Cattani-Scholz
Rossana Elena Madrid
author_sort Ricardo Matias Trujillo
collection DOAJ
description In recent years, several devices have been developed for the direct measurement of hydrogen peroxide (H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>), a key compound in biological processes and an important chemical reagent in industrial applications. Classical enzymatic biosensors for H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> have been recently outclassed by electrochemical sensors that take advantage of material properties in the nano range. Electrodes with metal nanoparticles (NPs) such as Pt, Au, Pd and Ag have been widely used, often in combination with organic and inorganic molecules to improve the sensing capabilities. In this review, we present an overview of nanomaterials, molecules, polymers, and transduction methods used in the optimization of electrochemical sensors for H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> sensing. The different devices are compared on the basis of the sensitivity values, the limit of detection (LOD) and the linear range of application reported in the literature. The review aims to provide an overview of the advantages associated with different nanostructures to assess which one best suits a target application.
first_indexed 2024-03-10T13:02:07Z
format Article
id doaj.art-79738f71be514dcf8bfcba4f005f3aa9
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-10T13:02:07Z
publishDate 2021-03-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-79738f71be514dcf8bfcba4f005f3aa92023-11-21T11:25:47ZengMDPI AGSensors1424-82202021-03-01216220410.3390/s21062204Nanostructures in Hydrogen Peroxide SensingRicardo Matias Trujillo0Daniela Estefanía Barraza1Martin Lucas Zamora2Anna Cattani-Scholz3Rossana Elena Madrid4Laboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, ArgentinaLaboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, ArgentinaLaboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, ArgentinaWalter Schottky Institute and Physics Department, Technical University of Munich, Am Coulombwall 4, 85748 Garching, GermanyLaboratorio de Medios e Interfases (LAMEIN), DBI, FACET, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 Tucumán, ArgentinaIn recent years, several devices have been developed for the direct measurement of hydrogen peroxide (H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>), a key compound in biological processes and an important chemical reagent in industrial applications. Classical enzymatic biosensors for H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> have been recently outclassed by electrochemical sensors that take advantage of material properties in the nano range. Electrodes with metal nanoparticles (NPs) such as Pt, Au, Pd and Ag have been widely used, often in combination with organic and inorganic molecules to improve the sensing capabilities. In this review, we present an overview of nanomaterials, molecules, polymers, and transduction methods used in the optimization of electrochemical sensors for H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> sensing. The different devices are compared on the basis of the sensitivity values, the limit of detection (LOD) and the linear range of application reported in the literature. The review aims to provide an overview of the advantages associated with different nanostructures to assess which one best suits a target application.https://www.mdpi.com/1424-8220/21/6/2204hydrogen peroxidesensorsbiosensorsnanostructuresenzymes
spellingShingle Ricardo Matias Trujillo
Daniela Estefanía Barraza
Martin Lucas Zamora
Anna Cattani-Scholz
Rossana Elena Madrid
Nanostructures in Hydrogen Peroxide Sensing
Sensors
hydrogen peroxide
sensors
biosensors
nanostructures
enzymes
title Nanostructures in Hydrogen Peroxide Sensing
title_full Nanostructures in Hydrogen Peroxide Sensing
title_fullStr Nanostructures in Hydrogen Peroxide Sensing
title_full_unstemmed Nanostructures in Hydrogen Peroxide Sensing
title_short Nanostructures in Hydrogen Peroxide Sensing
title_sort nanostructures in hydrogen peroxide sensing
topic hydrogen peroxide
sensors
biosensors
nanostructures
enzymes
url https://www.mdpi.com/1424-8220/21/6/2204
work_keys_str_mv AT ricardomatiastrujillo nanostructuresinhydrogenperoxidesensing
AT danielaestefaniabarraza nanostructuresinhydrogenperoxidesensing
AT martinlucaszamora nanostructuresinhydrogenperoxidesensing
AT annacattanischolz nanostructuresinhydrogenperoxidesensing
AT rossanaelenamadrid nanostructuresinhydrogenperoxidesensing