Genetic Algorithm Methodology for the Estimation of Generated Power and Harmonic Content in Photovoltaic Generation

Renewable generation sources like photovoltaic plants are weather dependent and it is hard to predict their behavior. This work proposes a methodology for obtaining a parameterized model that estimates the generated power in a photovoltaic generation system. The proposed methodology uses a genetic a...

Full description

Bibliographic Details
Main Authors: David A. Elvira-Ortiz, Arturo Y. Jaen-Cuellar, Daniel Morinigo-Sotelo, Luis Morales-Velazquez, Roque A. Osornio-Rios, Rene de J. Romero-Troncoso
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/2/542
_version_ 1818503865792724992
author David A. Elvira-Ortiz
Arturo Y. Jaen-Cuellar
Daniel Morinigo-Sotelo
Luis Morales-Velazquez
Roque A. Osornio-Rios
Rene de J. Romero-Troncoso
author_facet David A. Elvira-Ortiz
Arturo Y. Jaen-Cuellar
Daniel Morinigo-Sotelo
Luis Morales-Velazquez
Roque A. Osornio-Rios
Rene de J. Romero-Troncoso
author_sort David A. Elvira-Ortiz
collection DOAJ
description Renewable generation sources like photovoltaic plants are weather dependent and it is hard to predict their behavior. This work proposes a methodology for obtaining a parameterized model that estimates the generated power in a photovoltaic generation system. The proposed methodology uses a genetic algorithm to obtain the mathematical model that best fits the behavior of the generated power through the day. Additionally, using the same methodology, a mathematical model is developed for harmonic distortion estimation that allows one to predict the produced power and its quality. Experimentation is performed using real signals from a photovoltaic system. Eight days from different seasons of the year are selected considering different irradiance conditions to assess the performance of the methodology under different environmental and electrical conditions. The proposed methodology is compared with an artificial neural network, with the results showing an improved performance when using the genetic algorithm methodology.
first_indexed 2024-12-10T21:29:34Z
format Article
id doaj.art-797824d3f94f4d44972802d9ca551d44
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-12-10T21:29:34Z
publishDate 2020-01-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-797824d3f94f4d44972802d9ca551d442022-12-22T01:32:52ZengMDPI AGApplied Sciences2076-34172020-01-0110254210.3390/app10020542app10020542Genetic Algorithm Methodology for the Estimation of Generated Power and Harmonic Content in Photovoltaic GenerationDavid A. Elvira-Ortiz0Arturo Y. Jaen-Cuellar1Daniel Morinigo-Sotelo2Luis Morales-Velazquez3Roque A. Osornio-Rios4Rene de J. Romero-Troncoso5HSPdigital—CA Mecatronica, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Campus San Juan del Rio, Rio Moctezuma 249, Col. San Cayetano, San Juan del Rio C. P. 76807, Queretaro, MexicoHSPdigital—CA Mecatronica, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Campus San Juan del Rio, Rio Moctezuma 249, Col. San Cayetano, San Juan del Rio C. P. 76807, Queretaro, MexicoHSPdigital—Research Group ADIRE, University of Valladolid, UVa., Paseo del Cauce, 59, 47011 Valladolid, SpainHSPdigital—CA Mecatronica, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Campus San Juan del Rio, Rio Moctezuma 249, Col. San Cayetano, San Juan del Rio C. P. 76807, Queretaro, MexicoHSPdigital—CA Mecatronica, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Campus San Juan del Rio, Rio Moctezuma 249, Col. San Cayetano, San Juan del Rio C. P. 76807, Queretaro, MexicoHSPdigital—CA Mecatronica, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Campus San Juan del Rio, Rio Moctezuma 249, Col. San Cayetano, San Juan del Rio C. P. 76807, Queretaro, MexicoRenewable generation sources like photovoltaic plants are weather dependent and it is hard to predict their behavior. This work proposes a methodology for obtaining a parameterized model that estimates the generated power in a photovoltaic generation system. The proposed methodology uses a genetic algorithm to obtain the mathematical model that best fits the behavior of the generated power through the day. Additionally, using the same methodology, a mathematical model is developed for harmonic distortion estimation that allows one to predict the produced power and its quality. Experimentation is performed using real signals from a photovoltaic system. Eight days from different seasons of the year are selected considering different irradiance conditions to assess the performance of the methodology under different environmental and electrical conditions. The proposed methodology is compared with an artificial neural network, with the results showing an improved performance when using the genetic algorithm methodology.https://www.mdpi.com/2076-3417/10/2/542genetic algorithmsparameter estimationphotovoltaic systemspower qualitytotal harmonic distortion
spellingShingle David A. Elvira-Ortiz
Arturo Y. Jaen-Cuellar
Daniel Morinigo-Sotelo
Luis Morales-Velazquez
Roque A. Osornio-Rios
Rene de J. Romero-Troncoso
Genetic Algorithm Methodology for the Estimation of Generated Power and Harmonic Content in Photovoltaic Generation
Applied Sciences
genetic algorithms
parameter estimation
photovoltaic systems
power quality
total harmonic distortion
title Genetic Algorithm Methodology for the Estimation of Generated Power and Harmonic Content in Photovoltaic Generation
title_full Genetic Algorithm Methodology for the Estimation of Generated Power and Harmonic Content in Photovoltaic Generation
title_fullStr Genetic Algorithm Methodology for the Estimation of Generated Power and Harmonic Content in Photovoltaic Generation
title_full_unstemmed Genetic Algorithm Methodology for the Estimation of Generated Power and Harmonic Content in Photovoltaic Generation
title_short Genetic Algorithm Methodology for the Estimation of Generated Power and Harmonic Content in Photovoltaic Generation
title_sort genetic algorithm methodology for the estimation of generated power and harmonic content in photovoltaic generation
topic genetic algorithms
parameter estimation
photovoltaic systems
power quality
total harmonic distortion
url https://www.mdpi.com/2076-3417/10/2/542
work_keys_str_mv AT davidaelviraortiz geneticalgorithmmethodologyfortheestimationofgeneratedpowerandharmoniccontentinphotovoltaicgeneration
AT arturoyjaencuellar geneticalgorithmmethodologyfortheestimationofgeneratedpowerandharmoniccontentinphotovoltaicgeneration
AT danielmorinigosotelo geneticalgorithmmethodologyfortheestimationofgeneratedpowerandharmoniccontentinphotovoltaicgeneration
AT luismoralesvelazquez geneticalgorithmmethodologyfortheestimationofgeneratedpowerandharmoniccontentinphotovoltaicgeneration
AT roqueaosorniorios geneticalgorithmmethodologyfortheestimationofgeneratedpowerandharmoniccontentinphotovoltaicgeneration
AT renedejromerotroncoso geneticalgorithmmethodologyfortheestimationofgeneratedpowerandharmoniccontentinphotovoltaicgeneration