Self-Supervised Autoencoders for Visual Anomaly Detection
We focus on detecting anomalies in images where the data distribution is supported by a lower-dimensional embedded manifold. Approaches based on autoencoders have aimed to control their capacity either by reducing the size of the bottleneck layer or by imposing sparsity constraints on their activati...
Huvudupphovsmän: | , , |
---|---|
Materialtyp: | Artikel |
Språk: | English |
Publicerad: |
MDPI AG
2024-12-01
|
Serie: | Mathematics |
Ämnen: | |
Länkar: | https://www.mdpi.com/2227-7390/12/24/3988 |