Self-Supervised Autoencoders for Visual Anomaly Detection

We focus on detecting anomalies in images where the data distribution is supported by a lower-dimensional embedded manifold. Approaches based on autoencoders have aimed to control their capacity either by reducing the size of the bottleneck layer or by imposing sparsity constraints on their activati...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Alexander Bauer, Shinichi Nakajima, Klaus-Robert Müller
Materialtyp: Artikel
Språk:English
Publicerad: MDPI AG 2024-12-01
Serie:Mathematics
Ämnen:
Länkar:https://www.mdpi.com/2227-7390/12/24/3988