Bloch estimates in non-doubling generalized Orlicz spaces

<p>We study minimizers of non-autonomous functionals</p> <p class="disp_formula">$ \begin{align*} \inf\limits_u \int_\Omega \varphi(x,|\nabla u|) \, dx \end{align*} $</p> <p>when $ \varphi $ has generalized Orlicz growth. We consider the case where the u...

Full description

Bibliographic Details
Main Authors: Petteri Harjulehto, Peter Hästö, Jonne Juusti
Format: Article
Language:English
Published: AIMS Press 2023-08-01
Series:Mathematics in Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mine.2023052?viewType=HTML
_version_ 1797743381736062976
author Petteri Harjulehto
Peter Hästö
Jonne Juusti
author_facet Petteri Harjulehto
Peter Hästö
Jonne Juusti
author_sort Petteri Harjulehto
collection DOAJ
description <p>We study minimizers of non-autonomous functionals</p> <p class="disp_formula">$ \begin{align*} \inf\limits_u \int_\Omega \varphi(x,|\nabla u|) \, dx \end{align*} $</p> <p>when $ \varphi $ has generalized Orlicz growth. We consider the case where the upper growth rate of $ \varphi $ is unbounded and prove the Harnack inequality for minimizers. Our technique is based on "truncating" the function $ \varphi $ to approximate the minimizer and Harnack estimates with uniform constants via a Bloch estimate for the approximating minimizers.</p>
first_indexed 2024-03-12T14:54:41Z
format Article
id doaj.art-7988ba7cbfdf4429b00a8fe5fa19ab99
institution Directory Open Access Journal
issn 2640-3501
language English
last_indexed 2024-03-12T14:54:41Z
publishDate 2023-08-01
publisher AIMS Press
record_format Article
series Mathematics in Engineering
spelling doaj.art-7988ba7cbfdf4429b00a8fe5fa19ab992023-08-15T01:37:38ZengAIMS PressMathematics in Engineering2640-35012023-08-015312110.3934/mine.2023052Bloch estimates in non-doubling generalized Orlicz spacesPetteri Harjulehto0Peter Hästö1Jonne Juusti 21. Department of Mathematics and Statistics, FI-00014 University of Helsinki, Finland2. Department of Mathematics and Statistics, FI-20014 University of Turku, Finland2. Department of Mathematics and Statistics, FI-20014 University of Turku, Finland<p>We study minimizers of non-autonomous functionals</p> <p class="disp_formula">$ \begin{align*} \inf\limits_u \int_\Omega \varphi(x,|\nabla u|) \, dx \end{align*} $</p> <p>when $ \varphi $ has generalized Orlicz growth. We consider the case where the upper growth rate of $ \varphi $ is unbounded and prove the Harnack inequality for minimizers. Our technique is based on "truncating" the function $ \varphi $ to approximate the minimizer and Harnack estimates with uniform constants via a Bloch estimate for the approximating minimizers.</p>https://www.aimspress.com/article/doi/10.3934/mine.2023052?viewType=HTMLnon-doublingharnack's inequalitygeneralized orlicz spacemusielak–orlicz spacesnonstandard growthvariable exponentdouble phase
spellingShingle Petteri Harjulehto
Peter Hästö
Jonne Juusti
Bloch estimates in non-doubling generalized Orlicz spaces
Mathematics in Engineering
non-doubling
harnack's inequality
generalized orlicz space
musielak–orlicz spaces
nonstandard growth
variable exponent
double phase
title Bloch estimates in non-doubling generalized Orlicz spaces
title_full Bloch estimates in non-doubling generalized Orlicz spaces
title_fullStr Bloch estimates in non-doubling generalized Orlicz spaces
title_full_unstemmed Bloch estimates in non-doubling generalized Orlicz spaces
title_short Bloch estimates in non-doubling generalized Orlicz spaces
title_sort bloch estimates in non doubling generalized orlicz spaces
topic non-doubling
harnack's inequality
generalized orlicz space
musielak–orlicz spaces
nonstandard growth
variable exponent
double phase
url https://www.aimspress.com/article/doi/10.3934/mine.2023052?viewType=HTML
work_keys_str_mv AT petteriharjulehto blochestimatesinnondoublinggeneralizedorliczspaces
AT peterhasto blochestimatesinnondoublinggeneralizedorliczspaces
AT jonnejuusti blochestimatesinnondoublinggeneralizedorliczspaces