3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images

Despite recent improvements in microscope technologies, segmenting and tracking cells in three-dimensional time-lapse images (3D + T images) to extract their dynamic positions and activities remains a considerable bottleneck in the field. We developed a deep learning-based software pipeline, 3DeeCel...

Full description

Bibliographic Details
Main Authors: Chentao Wen, Takuya Miura, Venkatakaushik Voleti, Kazushi Yamaguchi, Motosuke Tsutsumi, Kei Yamamoto, Kohei Otomo, Yukako Fujie, Takayuki Teramoto, Takeshi Ishihara, Kazuhiro Aoki, Tomomi Nemoto, Elizabeth MC Hillman, Koutarou D Kimura
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2021-03-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/59187
_version_ 1797991974843711488
author Chentao Wen
Takuya Miura
Venkatakaushik Voleti
Kazushi Yamaguchi
Motosuke Tsutsumi
Kei Yamamoto
Kohei Otomo
Yukako Fujie
Takayuki Teramoto
Takeshi Ishihara
Kazuhiro Aoki
Tomomi Nemoto
Elizabeth MC Hillman
Koutarou D Kimura
author_facet Chentao Wen
Takuya Miura
Venkatakaushik Voleti
Kazushi Yamaguchi
Motosuke Tsutsumi
Kei Yamamoto
Kohei Otomo
Yukako Fujie
Takayuki Teramoto
Takeshi Ishihara
Kazuhiro Aoki
Tomomi Nemoto
Elizabeth MC Hillman
Koutarou D Kimura
author_sort Chentao Wen
collection DOAJ
description Despite recent improvements in microscope technologies, segmenting and tracking cells in three-dimensional time-lapse images (3D + T images) to extract their dynamic positions and activities remains a considerable bottleneck in the field. We developed a deep learning-based software pipeline, 3DeeCellTracker, by integrating multiple existing and new techniques including deep learning for tracking. With only one volume of training data, one initial correction, and a few parameter changes, 3DeeCellTracker successfully segmented and tracked ~100 cells in both semi-immobilized and ‘straightened’ freely moving worm's brain, in a naturally beating zebrafish heart, and ~1000 cells in a 3D cultured tumor spheroid. While these datasets were imaged with highly divergent optical systems, our method tracked 90–100% of the cells in most cases, which is comparable or superior to previous results. These results suggest that 3DeeCellTracker could pave the way for revealing dynamic cell activities in image datasets that have been difficult to analyze.
first_indexed 2024-04-11T09:00:34Z
format Article
id doaj.art-798a037c858b49c6b741110877257a1d
institution Directory Open Access Journal
issn 2050-084X
language English
last_indexed 2024-04-11T09:00:34Z
publishDate 2021-03-01
publisher eLife Sciences Publications Ltd
record_format Article
series eLife
spelling doaj.art-798a037c858b49c6b741110877257a1d2022-12-22T04:32:47ZengeLife Sciences Publications LtdeLife2050-084X2021-03-011010.7554/eLife.591873DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse imagesChentao Wen0https://orcid.org/0000-0002-8609-476XTakuya Miura1Venkatakaushik Voleti2Kazushi Yamaguchi3Motosuke Tsutsumi4https://orcid.org/0000-0002-5832-3828Kei Yamamoto5https://orcid.org/0000-0003-2712-1550Kohei Otomo6https://orcid.org/0000-0002-5322-6295Yukako Fujie7Takayuki Teramoto8https://orcid.org/0000-0001-7060-7148Takeshi Ishihara9https://orcid.org/0000-0001-9175-3072Kazuhiro Aoki10https://orcid.org/0000-0001-7263-1555Tomomi Nemoto11https://orcid.org/0000-0001-6102-1495Elizabeth MC Hillman12https://orcid.org/0000-0001-5511-1451Koutarou D Kimura13https://orcid.org/0000-0002-3359-1578Graduate School of Science, Nagoya City University, Nagoya, JapanDepartment of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, JapanDepartments of Biomedical Engineering and Radiology and the Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United StatesGraduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan; National Institute for Physiological Sciences, Okazaki, JapanNational Institute for Physiological Sciences, Okazaki, Japan; Exploratory Research Center on Life and Living Systems, Okazaki, JapanNational Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan; The Graduate School for Advanced Study, Hayama, JapanNational Institute for Physiological Sciences, Okazaki, Japan; Exploratory Research Center on Life and Living Systems, Okazaki, Japan; The Graduate School for Advanced Study, Hayama, JapanDepartment of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, JapanDepartment of Biology, Faculty of Science, Kyushu University, Fukuoka, JapanDepartment of Biology, Faculty of Science, Kyushu University, Fukuoka, JapanExploratory Research Center on Life and Living Systems, Okazaki, Japan; National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan; The Graduate School for Advanced Study, Hayama, JapanNational Institute for Physiological Sciences, Okazaki, Japan; Exploratory Research Center on Life and Living Systems, Okazaki, Japan; The Graduate School for Advanced Study, Hayama, JapanDepartments of Biomedical Engineering and Radiology and the Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United StatesGraduate School of Science, Nagoya City University, Nagoya, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan; RIKEN center for Advanced Intelligence Project, Tokyo, JapanDespite recent improvements in microscope technologies, segmenting and tracking cells in three-dimensional time-lapse images (3D + T images) to extract their dynamic positions and activities remains a considerable bottleneck in the field. We developed a deep learning-based software pipeline, 3DeeCellTracker, by integrating multiple existing and new techniques including deep learning for tracking. With only one volume of training data, one initial correction, and a few parameter changes, 3DeeCellTracker successfully segmented and tracked ~100 cells in both semi-immobilized and ‘straightened’ freely moving worm's brain, in a naturally beating zebrafish heart, and ~1000 cells in a 3D cultured tumor spheroid. While these datasets were imaged with highly divergent optical systems, our method tracked 90–100% of the cells in most cases, which is comparable or superior to previous results. These results suggest that 3DeeCellTracker could pave the way for revealing dynamic cell activities in image datasets that have been difficult to analyze.https://elifesciences.org/articles/59187cell trackingbioimagingdeep learningquantitative biology
spellingShingle Chentao Wen
Takuya Miura
Venkatakaushik Voleti
Kazushi Yamaguchi
Motosuke Tsutsumi
Kei Yamamoto
Kohei Otomo
Yukako Fujie
Takayuki Teramoto
Takeshi Ishihara
Kazuhiro Aoki
Tomomi Nemoto
Elizabeth MC Hillman
Koutarou D Kimura
3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images
eLife
cell tracking
bioimaging
deep learning
quantitative biology
title 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images
title_full 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images
title_fullStr 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images
title_full_unstemmed 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images
title_short 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images
title_sort 3deecelltracker a deep learning based pipeline for segmenting and tracking cells in 3d time lapse images
topic cell tracking
bioimaging
deep learning
quantitative biology
url https://elifesciences.org/articles/59187
work_keys_str_mv AT chentaowen 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT takuyamiura 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT venkatakaushikvoleti 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT kazushiyamaguchi 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT motosuketsutsumi 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT keiyamamoto 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT koheiotomo 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT yukakofujie 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT takayukiteramoto 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT takeshiishihara 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT kazuhiroaoki 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT tomominemoto 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT elizabethmchillman 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages
AT koutaroudkimura 3deecelltrackeradeeplearningbasedpipelineforsegmentingandtrackingcellsin3dtimelapseimages