Towards Operational Definition of Postictal Stage: Spectral Entropy as a Marker of Seizure Ending

The postictal period is characterized by several neurological alterations, but its exact limits are clinically or even electroencephalographically hard to determine in most cases. We aim to provide quantitative functions or conditions with a clearly distinguishable behavior during the ictal-posticta...

Full description

Bibliographic Details
Main Authors: Ancor Sanz-García, Lorena Vega-Zelaya, Jesús Pastor, Rafael G. Sola, Guillermo J. Ortega
Format: Article
Language:English
Published: MDPI AG 2017-02-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/19/2/81
Description
Summary:The postictal period is characterized by several neurological alterations, but its exact limits are clinically or even electroencephalographically hard to determine in most cases. We aim to provide quantitative functions or conditions with a clearly distinguishable behavior during the ictal-postictal transition. Spectral methods were used to analyze foramen ovale electrodes (FOE) recordings during the ictal/postictal transition in 31 seizures of 15 patients with strictly unilateral drug resistant temporal lobe epilepsy. In particular, density of links, spectral entropy, and relative spectral power were analyzed. Partial simple seizures are accompanied by an ipsilateral increase in the relative Delta power and a decrease in synchronization in a 66% and 91% of the cases, respectively, after seizures offset. Complex partial seizures showed a decrease in the spectral entropy in 94% of cases, both ipsilateral and contralateral sides (100% and 73%, respectively) mainly due to an increase of relative Delta activity. Seizure offset is defined as the moment at which the “seizure termination mechanisms” actually end, which is quantified in the spectral entropy value. We propose as a definition for the postictal start the time when the ipsilateral SE reaches the first global minimum.
ISSN:1099-4300