A Review on Factors Affecting Machinability and Properties of Fiber-Reinforced Polymer Composites

The natural, glass, and carbon fiber reinforced polymer composites are currently being replaced conventional materials due to their lower specific weight and superior strength properties. Natural fiber-reinforced polymer composites (NFRPCs) have grown in importance in real world applications recentl...

Full description

Bibliographic Details
Main Author: Ibrahim M. Alarifi
Format: Article
Language:English
Published: Taylor & Francis Group 2023-04-01
Series:Journal of Natural Fibers
Subjects:
Online Access:http://dx.doi.org/10.1080/15440478.2022.2154304
Description
Summary:The natural, glass, and carbon fiber reinforced polymer composites are currently being replaced conventional materials due to their lower specific weight and superior strength properties. Natural fiber-reinforced polymer composites (NFRPCs) have grown in importance in real world applications recently due to a growing focus on the environmental and sustainability elements of engineering materials. The difficulty of machining FRP composites, which results in dimensional errors, poor product quality, and material damage, is due to their inhomogeneity, ease of deformation, and anisotropic nature. Moreover, this review gives an insight regarding recent developments and challenges that will help for upcoming researchers. The non-homogeneous properties and insufficient ductility of natural and synthetic fiber-reinforced composites have produced fracturing and discontinuous chips during the machining operations. The machinability of FRP composites depends on the constituents present in the composites. More delaminations were found in the natural fiber composites due to improper bonding and less compatibility with the polymer matrices, also the lower heat resistant property of the natural fibers causes serious problems during the machining process. Hence more studies are needed to decrease the thrust force and delamination damages in carbon, glass, and natural fiber reinforced polymer composites.
ISSN:1544-0478
1544-046X