A Quantum Ring Laser Gyroscope Based on Coherence de Broglie Waves

In sensors, the highest precision in measurements is given by vacuum fluctuations of quantum mechanics, resulting in a shot noise limit. In a Mach–Zenhder interferometer (MZI), the intensity measurement is correlated with the phase, and thus, the precision measurement (<inline-formula><math...

Full description

Bibliographic Details
Main Author: Byoung S. Ham
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/22/8687
_version_ 1797464023465197568
author Byoung S. Ham
author_facet Byoung S. Ham
author_sort Byoung S. Ham
collection DOAJ
description In sensors, the highest precision in measurements is given by vacuum fluctuations of quantum mechanics, resulting in a shot noise limit. In a Mach–Zenhder interferometer (MZI), the intensity measurement is correlated with the phase, and thus, the precision measurement (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">Δ</mi><mi mathvariant="normal">n</mi></mrow></mrow></semantics></math></inline-formula>) is coupled with the phase resolution (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">Δ</mi><mi mathvariant="sans-serif">φ</mi></mrow></mrow></semantics></math></inline-formula>) by the Heisenberg uncertainty principle. Quantum metrology offers a different solution to this precision measurement using nonclassical light such as squeezed light or higher-order entangled-photon pairs, resulting in a smaller <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">Δ</mi><mi mathvariant="sans-serif">φ</mi></mrow></mrow></semantics></math></inline-formula> and sub-shot noise limit. Here, we propose another method for the high precision measurement overcoming the diffraction limit in classical physics, where the smaller <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">Δ</mi><mi mathvariant="sans-serif">φ</mi></mrow></mrow></semantics></math></inline-formula> is achieved by phase quantization in a coupled interferometric system of coherence de Broglie waves. For a potential application of the proposed method, a quantum ring laser gyroscope is presented as a quantum version of the conventional ring laser gyroscope used for inertial navigation and geodesy.
first_indexed 2024-03-09T18:01:04Z
format Article
id doaj.art-79b19b2b590f4f27960d94ac5748031f
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-09T18:01:04Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-79b19b2b590f4f27960d94ac5748031f2023-11-24T09:54:11ZengMDPI AGSensors1424-82202022-11-012222868710.3390/s22228687A Quantum Ring Laser Gyroscope Based on Coherence de Broglie WavesByoung S. Ham0School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, 123 Chumdangwagi-ro, Buk-gu, Gwangju 61005, KoreaIn sensors, the highest precision in measurements is given by vacuum fluctuations of quantum mechanics, resulting in a shot noise limit. In a Mach–Zenhder interferometer (MZI), the intensity measurement is correlated with the phase, and thus, the precision measurement (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">Δ</mi><mi mathvariant="normal">n</mi></mrow></mrow></semantics></math></inline-formula>) is coupled with the phase resolution (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">Δ</mi><mi mathvariant="sans-serif">φ</mi></mrow></mrow></semantics></math></inline-formula>) by the Heisenberg uncertainty principle. Quantum metrology offers a different solution to this precision measurement using nonclassical light such as squeezed light or higher-order entangled-photon pairs, resulting in a smaller <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">Δ</mi><mi mathvariant="sans-serif">φ</mi></mrow></mrow></semantics></math></inline-formula> and sub-shot noise limit. Here, we propose another method for the high precision measurement overcoming the diffraction limit in classical physics, where the smaller <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi mathvariant="sans-serif">Δ</mi><mi mathvariant="sans-serif">φ</mi></mrow></mrow></semantics></math></inline-formula> is achieved by phase quantization in a coupled interferometric system of coherence de Broglie waves. For a potential application of the proposed method, a quantum ring laser gyroscope is presented as a quantum version of the conventional ring laser gyroscope used for inertial navigation and geodesy.https://www.mdpi.com/1424-8220/22/22/8687Sagnac interferometerring laser gyroscopequantum coherencecoherence de Broglie wavessensing
spellingShingle Byoung S. Ham
A Quantum Ring Laser Gyroscope Based on Coherence de Broglie Waves
Sensors
Sagnac interferometer
ring laser gyroscope
quantum coherence
coherence de Broglie waves
sensing
title A Quantum Ring Laser Gyroscope Based on Coherence de Broglie Waves
title_full A Quantum Ring Laser Gyroscope Based on Coherence de Broglie Waves
title_fullStr A Quantum Ring Laser Gyroscope Based on Coherence de Broglie Waves
title_full_unstemmed A Quantum Ring Laser Gyroscope Based on Coherence de Broglie Waves
title_short A Quantum Ring Laser Gyroscope Based on Coherence de Broglie Waves
title_sort quantum ring laser gyroscope based on coherence de broglie waves
topic Sagnac interferometer
ring laser gyroscope
quantum coherence
coherence de Broglie waves
sensing
url https://www.mdpi.com/1424-8220/22/22/8687
work_keys_str_mv AT byoungsham aquantumringlasergyroscopebasedoncoherencedebrogliewaves
AT byoungsham quantumringlasergyroscopebasedoncoherencedebrogliewaves