Longitudinal monitoring of individual infection progression in Drosophila melanogaster

Summary: The innate immune system is critical for infection survival. Drosophila melanogaster is a key model for understanding the evolution and dynamics of innate immunity. Current toolsets for fly infection studies are limited in throughput and, because of their destructive nature, cannot generate...

Full description

Bibliographic Details
Main Authors: Bryan A. Ramirez-Corona, Anna C. Love, Srikiran Chandrasekaran, Jennifer A. Prescher, Zeba Wunderlich
Format: Article
Language:English
Published: Elsevier 2022-11-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004222016509
_version_ 1811255782243565568
author Bryan A. Ramirez-Corona
Anna C. Love
Srikiran Chandrasekaran
Jennifer A. Prescher
Zeba Wunderlich
author_facet Bryan A. Ramirez-Corona
Anna C. Love
Srikiran Chandrasekaran
Jennifer A. Prescher
Zeba Wunderlich
author_sort Bryan A. Ramirez-Corona
collection DOAJ
description Summary: The innate immune system is critical for infection survival. Drosophila melanogaster is a key model for understanding the evolution and dynamics of innate immunity. Current toolsets for fly infection studies are limited in throughput and, because of their destructive nature, cannot generate longitudinal measurements in individual animals. We report a bioluminescent imaging strategy enabling non-invasive characterization of pathogen load. By using Escherichia coli expressing the ilux operon, we demonstrate that photon flux from autobioluminescent bacteria can be used to monitor pathogen loads in individual, living flies. Because animal sacrifice is not necessary to estimate pathogen load, stochastic responses to infection can be characterized in individuals over time. The high temporal resolution of bioluminescence imaging enables visualization of the dynamics of microbial clearance on the hours time-scale. This non-invasive imaging strategy provides a simple and scalable platform to observe changes in pathogen load in vivo over time.
first_indexed 2024-04-12T17:30:19Z
format Article
id doaj.art-79bafaa1675147bda5b79a15cfb33f6f
institution Directory Open Access Journal
issn 2589-0042
language English
last_indexed 2024-04-12T17:30:19Z
publishDate 2022-11-01
publisher Elsevier
record_format Article
series iScience
spelling doaj.art-79bafaa1675147bda5b79a15cfb33f6f2022-12-22T03:23:10ZengElsevieriScience2589-00422022-11-012511105378Longitudinal monitoring of individual infection progression in Drosophila melanogasterBryan A. Ramirez-Corona0Anna C. Love1Srikiran Chandrasekaran2Jennifer A. Prescher3Zeba Wunderlich4Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA92697, USADepartment of Chemistry, University of California, Irvine, Irvine, CA92697, USACenter for Complex Biological Sciences, University of California, Irvine, Irvine, CA92697, USADepartment of Chemistry, University of California, Irvine, Irvine, CA92697, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA92697, USADepartment of Developmental and Cell Biology, University of California, Irvine, Irvine, CA92697, USA; Department of Biology, Boston University, Boston, MA02215, USA; Biological Design Center, Boston University, Boston, MA02215, USA; Corresponding authorSummary: The innate immune system is critical for infection survival. Drosophila melanogaster is a key model for understanding the evolution and dynamics of innate immunity. Current toolsets for fly infection studies are limited in throughput and, because of their destructive nature, cannot generate longitudinal measurements in individual animals. We report a bioluminescent imaging strategy enabling non-invasive characterization of pathogen load. By using Escherichia coli expressing the ilux operon, we demonstrate that photon flux from autobioluminescent bacteria can be used to monitor pathogen loads in individual, living flies. Because animal sacrifice is not necessary to estimate pathogen load, stochastic responses to infection can be characterized in individuals over time. The high temporal resolution of bioluminescence imaging enables visualization of the dynamics of microbial clearance on the hours time-scale. This non-invasive imaging strategy provides a simple and scalable platform to observe changes in pathogen load in vivo over time.http://www.sciencedirect.com/science/article/pii/S2589004222016509Optical imagingMicrobiology
spellingShingle Bryan A. Ramirez-Corona
Anna C. Love
Srikiran Chandrasekaran
Jennifer A. Prescher
Zeba Wunderlich
Longitudinal monitoring of individual infection progression in Drosophila melanogaster
iScience
Optical imaging
Microbiology
title Longitudinal monitoring of individual infection progression in Drosophila melanogaster
title_full Longitudinal monitoring of individual infection progression in Drosophila melanogaster
title_fullStr Longitudinal monitoring of individual infection progression in Drosophila melanogaster
title_full_unstemmed Longitudinal monitoring of individual infection progression in Drosophila melanogaster
title_short Longitudinal monitoring of individual infection progression in Drosophila melanogaster
title_sort longitudinal monitoring of individual infection progression in drosophila melanogaster
topic Optical imaging
Microbiology
url http://www.sciencedirect.com/science/article/pii/S2589004222016509
work_keys_str_mv AT bryanaramirezcorona longitudinalmonitoringofindividualinfectionprogressionindrosophilamelanogaster
AT annaclove longitudinalmonitoringofindividualinfectionprogressionindrosophilamelanogaster
AT srikiranchandrasekaran longitudinalmonitoringofindividualinfectionprogressionindrosophilamelanogaster
AT jenniferaprescher longitudinalmonitoringofindividualinfectionprogressionindrosophilamelanogaster
AT zebawunderlich longitudinalmonitoringofindividualinfectionprogressionindrosophilamelanogaster