Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group

Abstract We prove geometric $$L^p$$ L p versions of Hardy’s inequality for the sub-elliptic Laplacian on convex domains $$\Omega $$ Ω in the Heisenberg group $$\mathbb {H}^n$$ H n , where convex is meant in the Euclidean sense. When $$p=2$$ p = 2 and $$\Omega $$ Ω is the half-space given by $$\langl...

Full description

Bibliographic Details
Main Author: Simon Larson
Format: Article
Language:English
Published: World Scientific Publishing 2016-04-01
Series:Bulletin of Mathematical Sciences
Subjects:
Online Access:http://link.springer.com/article/10.1007/s13373-016-0083-4
_version_ 1818517196150669312
author Simon Larson
author_facet Simon Larson
author_sort Simon Larson
collection DOAJ
description Abstract We prove geometric $$L^p$$ L p versions of Hardy’s inequality for the sub-elliptic Laplacian on convex domains $$\Omega $$ Ω in the Heisenberg group $$\mathbb {H}^n$$ H n , where convex is meant in the Euclidean sense. When $$p=2$$ p = 2 and $$\Omega $$ Ω is the half-space given by $$\langle \xi , \nu \rangle > d$$ ⟨ ξ , ν ⟩ > d this generalizes an inequality previously obtained by Luan and Yang. For such p and $$\Omega $$ Ω the inequality is sharp and takes the form $$\begin{aligned} \int _\Omega |\nabla _{\mathbb {H}^n}u|^2 \, d\xi \ge \frac{1}{4}\int _{\Omega } \sum _{i=1}^n\frac{\langle X_i(\xi ), \nu \rangle ^2+\langle Y_i(\xi ), \nu \rangle ^2}{{{\mathrm{\text {dist}}}}(\xi , \partial \Omega )^2}|u|^2\, d\xi , \end{aligned}$$ ∫ Ω | ∇ H n u | 2 d ξ ≥ 1 4 ∫ Ω ∑ i = 1 n ⟨ X i ( ξ ) , ν ⟩ 2 + ⟨ Y i ( ξ ) , ν ⟩ 2 dist ( ξ , ∂ Ω ) 2 | u | 2 d ξ , where $${{\mathrm{\text {dist}}}}(\, \cdot \,, \partial \Omega )$$ dist ( · , ∂ Ω ) denotes the Euclidean distance from $$\partial \Omega $$ ∂ Ω .
first_indexed 2024-12-11T00:52:55Z
format Article
id doaj.art-79e11e4f3be945b39eb2088ced218b8f
institution Directory Open Access Journal
issn 1664-3607
1664-3615
language English
last_indexed 2024-12-11T00:52:55Z
publishDate 2016-04-01
publisher World Scientific Publishing
record_format Article
series Bulletin of Mathematical Sciences
spelling doaj.art-79e11e4f3be945b39eb2088ced218b8f2022-12-22T01:26:35ZengWorld Scientific PublishingBulletin of Mathematical Sciences1664-36071664-36152016-04-016333535210.1007/s13373-016-0083-4Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg groupSimon Larson0Department of Mathematics, Royal Institute of TechnologyAbstract We prove geometric $$L^p$$ L p versions of Hardy’s inequality for the sub-elliptic Laplacian on convex domains $$\Omega $$ Ω in the Heisenberg group $$\mathbb {H}^n$$ H n , where convex is meant in the Euclidean sense. When $$p=2$$ p = 2 and $$\Omega $$ Ω is the half-space given by $$\langle \xi , \nu \rangle > d$$ ⟨ ξ , ν ⟩ > d this generalizes an inequality previously obtained by Luan and Yang. For such p and $$\Omega $$ Ω the inequality is sharp and takes the form $$\begin{aligned} \int _\Omega |\nabla _{\mathbb {H}^n}u|^2 \, d\xi \ge \frac{1}{4}\int _{\Omega } \sum _{i=1}^n\frac{\langle X_i(\xi ), \nu \rangle ^2+\langle Y_i(\xi ), \nu \rangle ^2}{{{\mathrm{\text {dist}}}}(\xi , \partial \Omega )^2}|u|^2\, d\xi , \end{aligned}$$ ∫ Ω | ∇ H n u | 2 d ξ ≥ 1 4 ∫ Ω ∑ i = 1 n ⟨ X i ( ξ ) , ν ⟩ 2 + ⟨ Y i ( ξ ) , ν ⟩ 2 dist ( ξ , ∂ Ω ) 2 | u | 2 d ξ , where $${{\mathrm{\text {dist}}}}(\, \cdot \,, \partial \Omega )$$ dist ( · , ∂ Ω ) denotes the Euclidean distance from $$\partial \Omega $$ ∂ Ω .http://link.springer.com/article/10.1007/s13373-016-0083-435A2335H20
spellingShingle Simon Larson
Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group
Bulletin of Mathematical Sciences
35A23
35H20
title Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group
title_full Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group
title_fullStr Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group
title_full_unstemmed Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group
title_short Geometric Hardy inequalities for the sub-elliptic Laplacian on convex domains in the Heisenberg group
title_sort geometric hardy inequalities for the sub elliptic laplacian on convex domains in the heisenberg group
topic 35A23
35H20
url http://link.springer.com/article/10.1007/s13373-016-0083-4
work_keys_str_mv AT simonlarson geometrichardyinequalitiesforthesubellipticlaplacianonconvexdomainsintheheisenberggroup